Skip to main content
Log in

A novel transchromosomic system: stable maintenance of an engineered Mb-sized human genomic fragment translocated to a mouse chromosome terminal region

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Transchromosomic (Tc) technology using human chromosome fragments (hCFs), or human artificial chromosomes (HACs), has been used for generating mice containing Mb-sized segments of the human genome. The most significant problem with freely segregating chromosomes with human centromeres has been mosaicism, possibly due to the instability of hCFs or HACs in mice. We report a system for the stable maintenance of Mb-sized human chromosomal fragments following translocation to mouse chromosome 10 (mChr.10). The approach utilizes microcell-mediated chromosome transfer and a combination of site-specific loxP insertion, telomere-directed chromosome truncation, and precise reciprocal translocation for the generation of Tc mice. Human chromosome 21 (hChr.21) was modified with a loxP site and truncated in homologous recombination-proficient chicken DT40 cells. Following transfer to mouse embryonic stem cells harboring a loxP site at the distal region of mChr.10, a ~4 Mb segment of hChr.21 was translocated to the distal region of mChr.10 by transient expression of Cre recombinase. The residual hChr.21/mChr.10ter fragment was reduced by antibiotic negative selection. Tc mice harboring the translocated ~4 Mb fragment were generated by chimera formation and germ line transmission. The hChr.21-derived Mb fragment was maintained stably in tissues in vivo and expression profiles of genes on hChr.21 were consistent with those seen in humans. Thus, Tc technology that enables translocation of human chromosomal regions onto host mouse chromosomes will be useful for studying in vivo functions of the human genome, and generating humanized model mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S (2004) Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 5(10):725–738

    Article  CAS  PubMed  Google Scholar 

  • Buerstedde JM, Takeda S (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67(1):179–188

    Article  CAS  PubMed  Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236(4803):806–812

    Article  CAS  PubMed  Google Scholar 

  • Costantini F, Radice G, Lee JL, Chada KK, Perry W, Son HJ (1989) Insertional mutations in transgenic mice. Prog Nucleic Acid Res Mol Biol 36:159–169

    Article  CAS  PubMed  Google Scholar 

  • Devoy A, Bunton-Stasyshyn RK, Tybulewicz VL, Smith AJ, Fisher EM (2012) Genomically humanized mice: technologies and promises. Nat Rev Genet 13(1):14–20

    Article  CAS  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  Google Scholar 

  • Inoue J, Mitsuya K, Maegawa S, Kugoh H, Kadota M, Okamura D, Shinohara T, Nishihara S, Takehara S, Yamauchi K, Schulz TC, Oshimura M (2001) Construction of 700 human/mouse A9 monochromosomal hybrids and analysis of imprinted genes on human chromosome 6. J Hum Genet 46(3):137–145

    Article  CAS  PubMed  Google Scholar 

  • Kazuki Y, Oshimura M (2011) Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 19(9):1591–1601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kazuki Y, Kimura M, Nishigaki R, Kai Y, Abe S, Okita C, Shirayoshi Y, Schulz TC, Tomizuka K, Hanaoka K, Inoue T, Oshimura M (2004) Human chromosome 21q22.2-qter carries a gene(s) responsible for downregulation of mlc2a and PEBP in Down syndrome model mice. Biochem Biophys Res Commun 317(2):491–499

    Article  CAS  PubMed  Google Scholar 

  • Kazuki Y, Hoshiya H, Kai Y, Abe S, Takiguchi M, Osaki M, Kawazoe S, Katoh M, Kanatsu-Shinohara M, Inoue K, Kajitani N, Yoshino T, Shirayoshi Y, Ogura A, Shinohara T, Barrett JC, Oshimura M (2008) Correction of a genetic defect in multipotent germline stem cells using a human artificial chromosome. Gene Ther 15(8):617–624

    Article  CAS  PubMed  Google Scholar 

  • Kazuki Y, Hoshiya H, Takiguchi M, Abe S, Iida Y, Osaki M, Katoh M, Hiratsuka M, Shirayoshi Y, Hiramatsu K, Ueno E, Kajitani N, Yoshino T, Kazuki K, Ishihara C, Takehara S, Tsuji S, Ejima F, Toyoda A, Sakaki Y, Larionov V, Kouprina N, Oshimura M (2011) Refined human artificial chromosome vectors for gene therapy and animal transgenesis. Gene Ther 18(4):384–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kazuki Y, Kobayashi K, Aueviriyavit S, Oshima T, Kuroiwa Y, Tsukazaki Y, Senda N, Kawakami H, Ohtsuki S, Abe S, Takiguchi M, Hoshiya H, Kajitani N, Takehara S, Kubo K, Terasaki T, Chiba K, Tomizuka K, Oshimura M (2013) Trans-chromosomic mice containing a human CYP3A cluster for prediction of xenobiotic metabolism in humans. Hum Mol Genet 22(3):578–592

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa Y, Tomizuka K, Shinohara T, Kazuki Y, Yoshida H, Ohguma A, Yamamoto T, Tanaka S, Oshimura M, Ishida I (2000) Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol 18(10):1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137(7):1235–1246

    Article  PubMed Central  PubMed  Google Scholar 

  • Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan JM, Sharpe PT, Brandner S, Bliss TV, Henderson DJ, Nizetic D, Tybulewicz VL, Fisher EM (2005) An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309(5743):2033–2037

    Article  PubMed Central  PubMed  Google Scholar 

  • Olson LE, Richtsmeier JT, Leszl J, Reeves RH (2004) A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 306(5696):687–690

    Article  CAS  PubMed  Google Scholar 

  • Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Annu Rev Genet 20:465–499

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T, Tomizuka K, Takehara S, Yamauchi K, Katoh M, Ohguma A, Ishida I, Oshimura M (2000) Stability of transferred human chromosome fragments in cultured cells and in mice. Chromosome Res 8(8):713–725

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T, Tomizuka K, Miyabara S, Takehara S, Kazuki Y, Inoue J, Katoh M, Nakane H, Iino A, Ohguma A, Ikegami S, Inokuchi K, Ishida I, Reeves RH, Oshimura M (2001) Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of down’s syndrome. Hum Mol Genet 10(11):1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89(18):8794–8797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AJ, De Sousa MA, Kwabi-Addo B, Heppell-Parton A, Impey H, Rabbitts P (1995) A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet 9(4):376–385

    Article  CAS  PubMed  Google Scholar 

  • Soriano P, Gridley T, Jaenisch R (1987) Retroviruses and insertional mutagenesis in mice: proviral integration at the Mov 34 locus leads to early embryonic death. Genes Dev 1(4):366–375

    Article  CAS  PubMed  Google Scholar 

  • Takiguchi M, Kazuki Y, Hiramatsu K, Abe S, Iida Y, Takehara S, Nishida T, Ohbayashi T, Wakayama T, Oshimura M (2012) A novel and stable mouse artificial chromosome vector. ACS Synth Biol. doi:10.1021/sb3000723

  • Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WW, Chambers I, Smith AJ, Smith AG, Stewart AF (2003) Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 21(4):443–447

    Article  CAS  PubMed  Google Scholar 

  • Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A, Hayasaka M, Hanaoka K, Oshimura M, Ishida I (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16(2):133–143

    Article  CAS  PubMed  Google Scholar 

  • Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S, Sato K, Oshimura M, Ishida I (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci USA 97(2):722–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace HA, Marques-Kranc F, Richardson M, Luna-Crespo F, Sharpe JA, Hughes J, Wood WG, Higgs DR, Smith AJ (2007) Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 128(1):197–209

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Seed B (2003) Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat Biotechnol 21(4):447–451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the 21st Century Center of Excellence (COE) program from Japan Society for the Promotion of Science (JSPS) (M.O.), JST, CREST (M.O.), and Funding Program for Next Generation World-Leading Researchers (NEXT Program) from Japan Society for the Promotion of Science (JSPS) (Y.K.). We thank Dr. S. Aizawa at RIKEN CDB for providing TT2F cell lines; Dr. K. Hanaoka at Kitazato University, T. Shinohara, Y. Kai, M. Kimura, E. Ueno, Y. Iida, N. Kajitani, T. Yoshino, K. Fujimoto, Y. Sumida, C. Ishihara, N. Imaoka and C. Igawa at Tottori University, and A. Ohguma, K. Horikoshi at Kyowa Hakko Kirin for their technical assistance; and Dr. Y. Shirayoshi, Dr. H. Kugoh, Dr. M. Hiratsuka, Dr. M. Osaki, Dr. M. Katoh at Tottori University for critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kazuki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 786 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takehara, S., Schulz, T.C., Abe, S. et al. A novel transchromosomic system: stable maintenance of an engineered Mb-sized human genomic fragment translocated to a mouse chromosome terminal region. Transgenic Res 23, 441–453 (2014). https://doi.org/10.1007/s11248-014-9781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9781-4

Keywords

Navigation