Skip to main content
Log in

ARTEMIS Mission Design

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The ARTEMIS mission takes two of the five THEMIS spacecraft beyond their prime mission objectives and reuses them to study the Moon and the lunar space environment. Although the spacecraft and fuel resources were tailored to space observations from Earth orbit, sufficient fuel margins, spacecraft capability, and operational flexibility were present that with a circuitous, ballistic, constrained-thrust trajectory, new scientific information could be gleaned from the instruments near the Moon and in lunar orbit. We discuss the challenges of ARTEMIS trajectory design and describe its current implementation to address both heliophysics and planetary science objectives. In particular, we explain the challenges imposed by the constraints of the orbiting hardware and describe the trajectory solutions found in prolonged ballistic flight paths that include multiple lunar approaches, lunar flybys, low-energy trajectory segments, lunar Lissajous orbits, and low-lunar-periapse orbits. We conclude with a discussion of the risks that we took to enable the development and implementation of ARTEMIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • V. Angelopoulos, The THEMIS Mission. Space Sci. Rev. 141, 5–34 (2008). doi:10.1007/s11214-008-9336-1

    Article  ADS  Google Scholar 

  • V. Angelopoulos, The ARTEMIS Mission. Space Sci. Rev. (2010). doi:10.1007/s11214-010-9687-2

    MATH  Google Scholar 

  • V. Angelopoulos, D.G. Sibeck, THEMIS and ARTEMIS. A proposal submitted for the Senior Review 2008 of the Mission Operations and Data Analysis Program for the Heliophysics Operating Missions. Available at http://www.igpp.ucla.edu/public/THEMIS/SCI/Pubs/Proposals%20and%20Reports/HP_SR_2008_THEMIS_SciTech_20080221.pdf (2008)

  • D. Auslander, J. Cermenska, G. Dalton, M. de laPena, C.K.H. Dharan, W. Donokowski, R. Duck, J. Kim, D. Pankow, A. Plauche, M. Rahmani, S. Sulack, T.F. Tan, P. Turin, T. Williams, Instrument boom mechanisms on the THEMIS satellites; magnetometer, radial wire, and axial booms. Space Sci. Rev. 141, 185–211 (2008). doi:10.1007/s11214-008-9386-4

    Article  ADS  Google Scholar 

  • J.V. Breakwell, J.V. Brown, The halo family of 3-dimensional periodic orbits in the earth-moon restricted 3-body problem. Celest. Mech. 20, 389–404 (1979)

    Article  ADS  MATH  Google Scholar 

  • S.B. Broschart, M.K. Chung, S.J. Hatch, J.H. Ma, T.H. Sweetser, S.S. Weinstein-Weiss, V. Angelopoulos, Preliminary trajectory design for the Artemis lunar mission, in AAS/AIAA Astrodynamics Specialists Conference, Pittsburgh, Pennsylvania, ed. by A.V. Rao, T.A. Lovell, F.K. Chan, L.A. Cangahuala. Advances in the Astronautical Sciences, vol. 134 (Univelt, Inc., San Diego, 2009). American Astronautical Society/American Institute of Aeronautics and Astronautics

    Google Scholar 

  • S.B. Broschart, T.H. Sweetser, V. Angelopoulos, D.C. Folta, M.A. Woodard, Artemis lunar orbit insertion and science orbit design through 2013. Presented at the 2011 AAS/AIAA Astrodynamics Specialists Meeting, Girdwood, AK, July 31–August 4, 2011, AAS paper 11-509 (2011)

  • M.K. Chung, V. Angelopoulos, S. Weinstein-Weiss, R. Roncoli, N. Murphy, Personal email communications, August 13–19 (2005)

  • R. Farquhar, The utilization of halo orbits in advanced lunar operation. Technical report TN-D6365, NASA, GSFC, Greenbelt, MD, 1971

  • R.W. Farquhar, A.A. Kamel, Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458–473 (1973)

    Article  ADS  MATH  Google Scholar 

  • D. Folta, T.A. Pavlak, K.C. Howell, M.A. Woodard, D.W. Woodfork, Stationkeeping of Lissajous trajectories in the Earth-Moon system with applications to ARTEMIS, in Advances in the Astronautical Sciences, pp. 193–208 (2010)

    Google Scholar 

  • S. Frey, V. Angelopoulos, M. Bester, J. Bonnell, T. Phan, D. Rummel, Orbit design for the THEMIS mission. Space Sci. Rev. 141, 61–89 (2008). doi:10.1007/s11214-008-9441-1

    Article  ADS  Google Scholar 

  • G. Gómez, K. Howell, J. Masdemont, C. Simó, Station-keeping strategies for translunar libration point orbits, in AAS/AIAA Spaceflight Mechanics 1998, ed. by J. Middour, L. Sackett, L. D’Amario, D. Byrnes. Advances in the Astronautical Sciences, vol. 99 (Univelt, Inc., San Diego, 1998), pp. 949–967

    Google Scholar 

  • P. Harvey, E. Taylor, R. Sterling, M. Cully, The THEMIS constellation. Space Sci. Rev. 141, 117–152 (2008). doi:10.1007/s11214-008-9416-2

    Article  ADS  Google Scholar 

  • D. Hoffman, Stationkeeping at the colinear equilibrium points of the earth-moon system, Technical report JSC-26189, NASA (1993)

  • K.C. Howell, T.M. Keeter, Station-keeping strategies for libration point orbits: target point and floquet mode approaches, in Proceedings of the AAS/AIAA Spaceflight Mechanics Conference 1995, ed. by R. Proulx, J. Liu, P. Seidelmann, S. Alfano. Advances in the Astronautical Sciences, vol. 89 (Univelt, Inc., San Diego, 1995), pp. 1377–1396

    Google Scholar 

  • K.C. Howell, B.T. Barden, M.W. Lo, Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45(2), 161–178 (1997)

    MathSciNet  Google Scholar 

  • W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000). doi:10.1063/1.166509

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • B.D. Owens, D.P. Cosgrove, J.E. Marchese, J.W. Bonnell, D.H. Pankow, S. Frey, M.G. Bester, Mass ejection anomaly in Lissajous orbit: response and implications for the Artemis mission. Presented at the 2012 AAS/AIAA Spaceflight Mechanics Meeting, Charleston, SC, Jan. 29–Feb. 2, Paper AAS 12-181 (2012)

  • C. Renault, D. Scheeres, Statistical analysis of control maneuvers in unstable orbital environments. J. Guid. Control Dyn. 26(5), 758–769 (2003)

    Article  Google Scholar 

  • D.J. Scheeres, M.D. Guman, B.F. Villac, Stability analysis of planetary satellite orbiters: applications to the Europa orbiter. J. Guid. Control Dyn. 24(4), 778–787 (2001)

    Article  Google Scholar 

  • M. Sholl, M. Leeds, J. Holbrook, THEMIS reaction control system—from I&T through early orbit operations, in Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, USA, 8–11 July 2007 (2007)

    Google Scholar 

  • G.J. Whiffen, Static/dynamic for optimizing a useful objective, United states patent, No. 6,496,741. Issued December 2002 (1999)

  • G.J. Whiffen, Mystic: implementation of the static dynamic optimal control algorithm for high-fidelity, low-thrust trajectory design, in Proceedings of the AIAA/ASS Astrodynamics Specialists Conference, Keystone, Colorado (2006) Paper AIAA 2006-6741

    Google Scholar 

  • M. Woodard, D. Folta, D. Woodfork, 2009 ARTEMIS: the first mission to the lunar libration points. Presented at the 21st International Symposium on Space Flight Dynamics, Toulouse, France

Download references

Acknowledgements

The work described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

The authors would like to recognize and compliment the outstanding contributions of the THEMIS/ARTEMIS science team, the ARTEMIS mission design team at the Jet Propulsion Laboratory, the ARTEMIS navigation and maneuver design team at Goddard Space Flight Center, and the THEMIS/ARTEMIS navigation, maneuver design, and operations team at the University of California-Berkeley Space Science Laboratory to the successful development and implementation (so far) of the ARTEMIS mission. Judy Hohl, our editor at UCLA, and Emmanuel Masongsong, our graphics editor at UCLA, contributed significantly to the readability of this paper. The maneuver data in the tables above were supplied by Dan Cosgrove, the THEMIS/ARTEMIS Navigation Lead.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore H. Sweetser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweetser, T.H., Broschart, S.B., Angelopoulos, V. et al. ARTEMIS Mission Design. Space Sci Rev 165, 27–57 (2011). https://doi.org/10.1007/s11214-012-9869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9869-1

Keywords

Navigation