Skip to main content
Log in

Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

  • Photochemistry and Magnetochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Heller, Acc. Chem. Res. 28, 503 (1995).

    Article  CAS  Google Scholar 

  2. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  3. K. I. Hadjiivanov and D. K. Klissurski, Chem. Soc. Rev. 25, 61 (1996).

    Article  CAS  Google Scholar 

  4. G. P. Sivalingam, M. H. Priya, and G. Madras, Appl. Catal. B: Environ. 51, 67 (2004).

    Article  CAS  Google Scholar 

  5. M. R. Hoffmann, S. T. Martin, W. Choi, et al., Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  6. A. Ennaoui, B. R. Sankapal, V. Skryshevsky, et al., Sol. Energy Mater. Sol. Cells 90, 1533 (2006).

    Article  CAS  Google Scholar 

  7. S. Anan, P. Sathish Kumar, and N. Pugazhenthiran, et al., Sol. Energy Mater. Sol. Cells 92, 929 (2008).

    Article  Google Scholar 

  8. B. S. Liu, L. P. Wen, and X. J. Zhao, Mater. Chem. Phys. 112, 35 (2008).

    Article  CAS  Google Scholar 

  9. J. P. Yasomanee and J. Bandara, Sol. Energy Mater. Sol. Cells 92, 348 (2008).

    Article  CAS  Google Scholar 

  10. W. C. Hung, S. H. Fu, J. J. Tseng, et al., Chemosphere 66, 2142 (2007).

    Article  CAS  Google Scholar 

  11. R. C. W. Lam, M. K. H. Leung, D. Y. C. Leung, et al., Sol. Energy Mater. Sol. Cells 91, 54 (2007).

    Article  CAS  Google Scholar 

  12. L. Su, J. Li, C. L. Wang, et al., Sol. Energy Mater. Sol. Cells 93, 1875 (2009).

    Article  Google Scholar 

  13. P. V. Kamat, Chem. Rev. 93, 267 (1993).

    Article  CAS  Google Scholar 

  14. Y. Bessekhouad, N. Chaoui, M. Trzpit, et al., J. Photochem. Photobiol. A: Chem. 183, 218 (2006).

    Article  CAS  Google Scholar 

  15. A. Wold, Chem. Mater. 5, 280 (1993).

    Article  CAS  Google Scholar 

  16. A. Sclafani and J. M. Herrmann, J. Photochem. Photobiol. A: Chem. 113, 181 (1998).

    Article  CAS  Google Scholar 

  17. V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Phys. Chem. B 105, 11439 (2001).

    Article  CAS  Google Scholar 

  18. V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Am. Chem. Soc. 126, 4943 (2004).

    Article  CAS  Google Scholar 

  19. M. R. V. Sahyun and N. Serpone, Langmuir 13, 5082 (1997).

    Article  CAS  Google Scholar 

  20. V. Vamathevan, R. Amal, D. Beydoun, et al., J. Photochem. Photobiol. A: Chem. 148, 233 (2002).

    Article  CAS  Google Scholar 

  21. M. K. Seery, R. George, P. Floris, et al., J. Photochem. Photobiol. A: Chem. 189, 258 (2007).

    Article  CAS  Google Scholar 

  22. S. Sakthivel, M. V. Shankar, M. Palanichamy, et al., Water Res. 38, 3001 (2004).

    Article  CAS  Google Scholar 

  23. A. Dawson and P. V. Kamat, J. Phys. Chem. B 105, 960 (2001).

    Article  CAS  Google Scholar 

  24. M. Jakob, H. Levanon, and P. V. Kamat, Nano Lett. 3, 353 (2003).

    Article  CAS  Google Scholar 

  25. W. Kubo and T. Tatsuma, J. Mater. Chem. 15, 3104 (2005).

    Article  CAS  Google Scholar 

  26. Q. Fu and T. Wagner, Surf. Sci. Rep. 62, 431 (2007).

    Article  CAS  Google Scholar 

  27. H. Kisch, L. Zang, C. Lange, et al., Angew. Chem. Int. Ed. 37, 3034 (1998).

    Article  CAS  Google Scholar 

  28. L. Zang, C. Lange, I. Abraham, et al., J. Phys. Chem. B 102, 10765 (1998).

    Article  CAS  Google Scholar 

  29. X. Z. Li and F. B. Li, Environ. Sci. Technol. 35, 2381 (2001).

    Article  CAS  Google Scholar 

  30. M. A. Behnajady, N. Modirshahla, and R. Hamzavi, J. Hazard. Mater. B 133, 226 (2006).

    Article  CAS  Google Scholar 

  31. J. Wang, F. Y. Wen, Z. H. Zhang, et al., J. Photochem. Photobiol. A: Chem. 180, 189 (2006).

    Article  CAS  Google Scholar 

  32. Z. M. Shi and L. N. Jin, J. Non-Cryst. Solids 355, 213 (2009).

    Article  CAS  Google Scholar 

  33. V. Iliev, D. Tomova, L. Bilyarska, et al., Appl. Catal. B: Environ. 63, 266 (2006).

    Article  CAS  Google Scholar 

  34. W. Zhao, L. L. Feng, R. Yang, et al., Appl. Catal. B: Environ. 103, 181 (2011).

    Article  CAS  Google Scholar 

  35. J. X. He, P. J. Yang, H. Sato, et al., J. Electroanal. Chem. 566, 227 (2004).

    Article  CAS  Google Scholar 

  36. H. T. Gomes, B. F. Machado, A. M. T. Silva, et al., Mater. Lett. 65, 966 (2011).

    Article  CAS  Google Scholar 

  37. M. C. Hidalgo, J. J. Murcia, J. A. Navio, et al., Appl. Catal. A: Gen. 397, 112 (2011).

    Article  CAS  Google Scholar 

  38. M. Maicu, M. C. Hidalgo, G. Colon, et al., J. Photochem. Photobiol. A: Chem. 217, 275 (2011).

    Article  CAS  Google Scholar 

  39. S. S. B. Atlaa, C. C. Chenb, C. Y. Chena, et al., J. Photochem. Photobiol. A: Chem. 236, 1 (2012).

    Article  Google Scholar 

  40. M. V. Dozzi, A. Saccomanni, and E. Selli, J. Hazard. Mater. 211–212, 188 (2012).

    Article  Google Scholar 

  41. Y. X. Han, J. Zhou, W. J. Wang, et al., Appl. Catal. B: Environ. 125, 172 (2012).

    Article  CAS  Google Scholar 

  42. T. Fukuyo and H. Imai, J. Cryst. Growth 241, 193 (2002).

    Article  CAS  Google Scholar 

  43. Y. Q. Qin, X. H. Ji, J. Jing, et al., Colloids Surf. A: Physicochem. Eng. Asp. 372, 172 (2010).

    Article  CAS  Google Scholar 

  44. C. J. Yang, C. Q. Gong, T. Y. Peng, et al., J. Hazard. Mater. 178, 152 (2010).

    Article  CAS  Google Scholar 

  45. V. R. Manikam, K. Y. Cheong, and K. A. Razak, Mater. Sci. Eng. B 176, 187 (2011).

    Article  CAS  Google Scholar 

  46. M. Chatenet, F. Micoud, and I. Roche, Electrochim. Acta 51, 5459 (2006).

    Article  CAS  Google Scholar 

  47. S. Wojtysiak and A. Kudelski, Colloids Surf. A: Physicochem. Eng. Asp. 410, 45 (2012).

    Article  CAS  Google Scholar 

  48. H. Uchida, S. Katoh, and M. Watanabe, Electrochim. Acta 43, 2111 (1998).

    Article  CAS  Google Scholar 

  49. S. A. Amin, M. Pazouki, and A. Hosseinnia, Powder Technol. 196, 241 (2009).

    Article  CAS  Google Scholar 

  50. J. Q. Gao, R. Z. Jiang, J. Wang, et al., Ultrason. Sonochem. 18, 541 (2011).

    Article  CAS  Google Scholar 

  51. K. Nagaoka, K. Takanabe, and K. Aika, Chem. Commun. 9, 1006 (2002).

    Article  Google Scholar 

  52. U. Diebold, Surf. Sci. Rep. 48, 53 (2003).

    Article  CAS  Google Scholar 

  53. J. C. Yu, L. Wu, J. Lin, et al., Chem. Commun. 13, 1552 (2003).

    Article  Google Scholar 

  54. B. Tryba, M. Toyoda, A. W. Morawski, et al., Chemosphere 60, 477 (2005).

    Article  CAS  Google Scholar 

  55. D. G. Shchukin and R. A. Caruso, Adv. Funct. Mater. 13, 789 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ma, C.H., Wang, J. et al. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field. Russ. J. Phys. Chem. 88, 2271–2279 (2014). https://doi.org/10.1134/S0036024414120449

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414120449

Keywords

Navigation