Skip to main content
Log in

Detection of Low Levels of Amorphous Lactose using H/D Exchange and FT-Raman Spectroscopy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To demonstrate the potential of monitoring H/D exchange by FT-Raman spectroscopy as a tool for the detection and quantification of low levels of amorphous lactose in formulations.

Methods

Samples containing different proportions of amorphous and crystalline lactose were prepared. H/D exchange was carried out by exposing the samples to a flow of D2O vapour. A calibration curve was constructed from the FT-Raman spectra of the deuterated samples by integrating the ν(OD) band and normalizing to an internal standard. This method was benchmarked against a conventional approach using Raman spectroscopy where the ratio of Raman bands associated with crystalline and amorphous lactose is used to estimate the amorphous content.

Results

The H/D exchange method revealed a linear response over the entire composite range with an excellent correlation coefficient (R 2 = 0.999). The sensitivity of this approach in detecting the amount of amorphous lactose present in a blend is significantly greater than that offered by conventional FT-Raman in the 0–10% level of amorphous material.

Conclusions

A non-destructive method that is capable of providing reproducible measurements of low levels of amorphous material in lactose has been demonstrated and this method has enhanced sensitivity relative to approaches using Raman spectroscopy without deuteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. C. Hancock, and G. Zografi. Characteristics and significance of the amorphous state. J. Pharm. Sci. 86:1–12 (1997). doi:10.1021/js9601896.

    Article  PubMed  CAS  Google Scholar 

  2. A. T. Florence, and E. G. Saloloe. Changes in crystallinity and solubility on comminution of digoxin and observations on spironalactone. J. Pharm. Pharmacol. 28:637–642 (1976).

    PubMed  CAS  Google Scholar 

  3. Y. Matsunga, N. Bando, H. Yuasa, and Y. Kanaya. Effects of grinding and tabletting on physico-chemical stability of anticancer drug, TAT-59. Chem. Pharm. Bull. 44:1931–1934 (1996).

    Google Scholar 

  4. M. Otsuka, and N. Kaneniwa. Effect of grinding on the degree of crystallinity of cephalexin powder. Chem. Pharm. Bull. 31:4489–4495 (1983).

    CAS  Google Scholar 

  5. A. Saleki-Gerhardt, C. Ahlneck, and G. Zografi. Assessment of disorder in crystalline solids. Int. J. Pharm. 101:237–247 (1994). doi:10.1016/0378-5173(94)90219-4.

    Article  CAS  Google Scholar 

  6. D. Q. M. Craig, P. G. Royall, V. L. Kett, and M. L. Hopton. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int. J. Pharm. 179:179–207 (1999). doi:10.1016/S0378-5173(98)00338-X.

    Article  PubMed  CAS  Google Scholar 

  7. S. J. Byard, S. L. Jackson, A. Smail, M. Bauer, and D. C. Apperley. Studies on the crystallinity of a pharmaceutical development drug substance. J. Pharm. Sci. 94:1321–1335 (2005). doi:10.1002/jps.20328.

    Article  PubMed  CAS  Google Scholar 

  8. N. Kaneniwa, K. Imagawa, and M. Otsuka. Effect of tabletting on the degree of crystallinity and on the dehydration and decomposition points of cephalexin crystalline powder. Chem. Pharm. Bull. 33:802–809 (1985).

    PubMed  CAS  Google Scholar 

  9. B. Shah, V. K. Kakumanu, and A. K. Bansal. Analytical Techniques for Quantification of Amorphous/Crystalline Phases in Pharmaceutical Solids. J. Pharm. Sci. 95:1641–1665 (2006). doi:10.1002/jps.20644.

    Article  PubMed  CAS  Google Scholar 

  10. G. Buckton, and P. Darcy. Assessment of disorder in crystalline powders—a review of analytical techniques and their application. Int. J. Pharm. 179:141–158 (1999). doi:10.1016/S0378-5173(98)00335-4.

    Article  PubMed  CAS  Google Scholar 

  11. X.-M. Zeng, G. P. Martin, C. Marriott, and J. Pritchard. Lactose as a carrier in dry powder formulations: the influence of surface characteristics on drug delivery. J. Pharm. Sci. 90:1424–1434 (2001). doi:10.1002/jps.1094.

    Article  PubMed  CAS  Google Scholar 

  12. I. Fix, and K.-J. Steffens. Quantifying low amorphous or crystalline amounts of alpha-lactose-monohydrate using X-ray powder diffraction, near infrared spectroscopy and differential scanning calorimetry. Drug Dev. Ind. Pharm. 30:513–523 (2004). doi:10.1081/DDC-120037482.

    Article  PubMed  CAS  Google Scholar 

  13. Á. Gombás, P. Szabó-Révész, M. Kata, G. Regdon Jr., and I. Erõs. Quantitative determination of crystallinity of a-lactose monohydrate by DSC. J. Therm. Anal. Calorim. 68:503–510 (2002). doi:10.1023/A:1016039819247.

    Article  Google Scholar 

  14. M. Saunders, K. Podluii, S. Shergill, G. Buckton, and P. Royall. The potential of high speed DSC (Hyper-DSC) for the detection and quantification of small amounts of amorphous content in predominantly crystalline samples. Int. J. Pharm. 274:35–40 (2004). doi:10.1016/j.ijpharm.2004.01.018.

    Article  PubMed  CAS  Google Scholar 

  15. G. Buckton, P. Darcy, and A. J. Mackellar. The use of isothermal microcalorimetry in the study of small degrees of amorphous content of powders. Int. J. Pharm. 117:253–256 (1995). doi:10.1016/0378-5173(94)00421-Z.

    Article  CAS  Google Scholar 

  16. K. Kawakami, T. Numa, and Y. Ida. Assessment of amorphous content by microcalorimetry. J. Pharm. Sci. 91:417–423 (2002). doi:10.1002/jps.10017.

    Article  PubMed  CAS  Google Scholar 

  17. S. E. Hogan, and G. Buckton. The quantification of small degrees of disorder in lactose using solution calorimetry. Int. J. Pharm. 207:57–64 (2000). doi:10.1016/S0378-5173(00)00527-5.

    Article  PubMed  CAS  Google Scholar 

  18. R. Lefort, A. De Gusseme, J.-F. Willart, F. Danede, and M. Descamps. Solid state NMR and DSC methods for quantifying the amorphous content in solid dosage forms: an application to ball-milling of trehalose. Int. J. Pharm. 280:209–219 (2004). doi:10.1016/j.ijpharm.2004.05.012.

    Article  PubMed  CAS  Google Scholar 

  19. J. W. Lubach, X. Dawei, B. E. Segmuller, and E. J. Munson. Investigation of the effects of pharmaceutical processing upon solid-state relaxation times and implications to solid-state formulation stability. J. Pharm. Sci. 96:777–787 (2006). doi:10.1002/jps.20684.

    Article  Google Scholar 

  20. L. S. Taylor, and G. Zografi. The quantitative analysis of crystallinity using FT-Raman spectroscopy. Pharm. Res. 15:755–761 (1998). doi:10.1023/A:1011979221685.

    Article  PubMed  CAS  Google Scholar 

  21. P. Niemela, M. Paallysaho, P. Harjunen, M. Koivisto, V.-P. Lehto, J. Suhonen, and K. Jarvinen. Quantitative analysis of amorphous content of lactose using CCD-Raman spectroscopy. J. Pharm. Bio. Anal. 37:907–911 (2005). doi:10.1016/j.jpba.2004.09.027.

    Article  Google Scholar 

  22. M. U. A. Ahlqvist, and L. S. Taylor. Water diffusion in hydrated crystalline and amorphous sugars monitored using H/D exchange. J. Pharm. Sci. 91:690–698 (2002). doi:10.1002/jps.10068.

    Article  PubMed  CAS  Google Scholar 

  23. M. U. A. Ahlqvist, and L. S. Taylor. Water dynamics in channel hydrates investigated using H/D exchange. Int. J. Pharm. 241:253–261 (2002). doi:10.1016/S0378-5173(02)00242-9.

    Article  PubMed  CAS  Google Scholar 

  24. J. Mann, and H. J. Marrinan. The reaction between cellulose and heavy water. 3. A quantitative study by infrared spectroscopy. Trans. Faraday Soc. 52:492–497 (1956). doi:10.1039/tf9565200492.

    Article  CAS  Google Scholar 

  25. Y. Hishikawa, E. Togawa, Y. Kataoka, and T. Kondo. Characterization of amorphous domains in cellulosic materials using a FTIR deuteration monitoring analysis. Polymer. 40:7117–7124 (1999). doi:10.1016/S0032-3861(99)00120-2.

    Article  CAS  Google Scholar 

  26. Y. Maréchal, and H. Chanzy. The hydrogen bond network in \({\text{I}}_\beta \) cellulose as observed by infrared spectrometry. J. Mol. Struct. 523:183–196 (2000). doi:10.1016/S0022-2860(99)00389-0.

    Article  Google Scholar 

  27. E. Katainen, P. Niemelä, P. Harjunen, J. Suhonen, and K. Järvinen. Evaluation of the amorphous content of lactose by solution calorimetry and Raman spectroscopy. Talanta. 68:1–5 (2005). doi:10.1016/j.talanta.2005.04.062.

    Article  CAS  Google Scholar 

  28. V.-P. Lehto, M. Tenho, K. Vähä-Heikkilä, P. Harjunen, M. Päällysaho, J. Välisaari, P. Niemelä, and K. Järvinen. The comparison of seven different methods to quantify the amorphous content of spray dried lactose. Powder Technol. 167:85–93 (2006). doi:10.1016/j.powtec.2006.05.019.

    Article  CAS  Google Scholar 

  29. Á. Gombás, I. Antal, P. Szabó-Révész, S. Marton, and I. Erõs. Quantitative determination of crystallinity of alpha-lactose monohydrate by near infrared spectroscopy (NIRS). Int. J. Pharm. 256:25–32 (2003). doi:10.1016/S0378-5173(03)00059-0.

    Article  PubMed  Google Scholar 

  30. J. J. Seyer, P. E. Luner, and M. S. Kemper. Application of Diffuse Reflectance Near-infrared spectroscopy for determination of crystallinity. J. Pharm. Sci. 89:1305–1316 (2000). doi:10.1002/1520-6017(200010)89:10<1305::AID-JPS8>3.0.CO;2-Q.

    Article  PubMed  CAS  Google Scholar 

  31. M. V. Pellow-Jarman, P. J. Hendra, and R. J. Lenhart. The dependence of Raman signal intensity on particle size for crystal powders. Vib. Spectrosc. 12:257–261 (1996). doi:10.1016/0924-2031(96)00023-9.

    Article  CAS  Google Scholar 

  32. D. J. Burnett, F. Thielmann, and J. Booth. Determining the critical relative humidity for moisture-induced phase transitions. Int. J. Pharm. 287:123–133 (2004). doi:10.1016/j.ijpharm.2004.09.009.

    Article  PubMed  CAS  Google Scholar 

  33. R. Young, and P. M. Price. Visualization of the crystallization of lactose from the amorphous state. J. Pharm. Sci. 93:155–164 (2004). doi:10.1002/jps.10549.

    Article  PubMed  Google Scholar 

  34. D. Lechuga-Ballesteros, A. Bakri, and D. P. Miller. Microcalorimetic measurement of the interactions between water vapor and amorphous pharmaceutical solids. Pharm. Res. 20:308–318 (2003). doi:10.1023/A:1022406709912.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the KTP for financial support of this project. Mr. Martin Dellar of the School of Chemistry, The University of Nottingham and Mr. John Fisher of Triton Technology are thanked for their assistance in the design and development of the dynamic deuteration apparatus. We are grateful to Mr. Andrew Camenisch and Ms. Abigail Shapland for their preliminary experimental work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul T. Whiteside or Michael W. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteside, P.T., Luk, S.Y., Madden-Smith, C.E. et al. Detection of Low Levels of Amorphous Lactose using H/D Exchange and FT-Raman Spectroscopy. Pharm Res 25, 2650–2656 (2008). https://doi.org/10.1007/s11095-008-9682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9682-4

KEY WORDS

Navigation