Skip to main content

Advertisement

Log in

Vineyard zone delineation by cluster classification based on annual grape and vine characteristics

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

This study describes a method for vineyard zone delineation based on spatial interpolation of data on annual monitoring of grape and vine growth from 2007 to 2012 for four commercial vines (Cabernet Sauvignon, Mencía, Merlot and Tempranillo) located in the Bierzo Denomination of Origen (NW Spain). A sampled grid of 20 × 29 m (14 vines/ha) was defined for each vineyard and data were collected for ten soil, six grape composition, three grape production and five vine vigour variables. Continuous maps of each variable were created by spatial interpolation from the sampled points. Several zone delineations were obtained by clustering—using the iterative self-organizing data analysis (ISODATA) algorithm—according to different combinations of the studied variables. The resulting zone delineations were analysed (ANOVA) in order to determine whether the variables in the two cluster classifications for two or three zones were statistically different from each other. The selected delineation was the cluster that included total soluble solids, titratable acidity, total phenolic content, pH, mean cluster weight and length of the internode in two zones. The results point to the feasibility of this approach to vineyard zone delineation. Further research is necessary to confirm the effectiveness of this approach for other locations and evaluate the usefulness of introducing new grape and vine variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BW:

Mean berry weight (×10−3 kg)

Cgv2:

Two-zone delineation using interpolated maps of the grape and vine variables. The inputs were total soluble solids (ºBrix), titratable acidity (g/L), total phenolic content (A280), pH, cluster weight (kg 10−3) and length of the internode (m 10−2)

Cgv3:

Three-zone delineation using interpolated maps of the grape and vine variables. The inputs were total soluble solids (ºBrix), titratable acidity (g/L), total phenolic content (A280), pH, cluster weight (kg 10−3) and length of the internode (m 10−2)

CI:

Colour intensity (A420 + A520 + A620)

Cs2:

Two-zone delineation using interpolated maps of the soil variables. The inputs were sand (%), silt (%), clay (%), phosphorous (%), pH, calcium (%), magnesium (%), potassium (%) nitrogen (%) and organic matter (%)

Cs3:

Three-zone delineation using interpolated maps of the soil variables. The inputs were sand (%), silt (%), clay (%), phosphorous (%), pH, calcium (%), magnesium (%), potassium (%) nitrogen (%) and organic matter (%)

CT:

Colour tonality (A420/A520)

CV:

Coefficient of variation

CW:

Mean cluster weight (×10−3 kg)

DS:

Mean diameter of shoots (×10−3 m)

IC:

Cambardella index

LI:

Mean length of internodes (×10−2 m)

LS:

Mean length of shoots (×10−2 m)

NDVI:

Normalized difference vegetation index

OM:

Organic matter

PW:

Shoot pruning weight (×10−3 kg)

TA:

Titratable acidity (g/L)

TPC:

Total phenolic content (A280)

TSS:

Total soluble solids (ºBrix)

WS:

Mean weight of shoots (×10−3 kg)

Y:

Yield (×10−3 kg)

References

  • Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2008). The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture, 9, 285–302. doi:10.1007/s11119-008-9073-1.

    Article  Google Scholar 

  • Arnó, J., Bordes, X., Ribes-Dasi, M., Blanco, R., Rosell, J., & Esteve, J. (2005). Obtaining grape yield maps and analysis of within-field variability in Raimat (Spain). In J. V. Stafford (Ed.), Proceedings of the 5th European conference on precision agriculture (pp. 899–906). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Arnó, J., Martínez Casasnovas, J. A., RibesDasi, M., & Rosell Polo, J. R. (2009). Review. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Spanish Journal of Agricultural Research, 7(4), 779–790.

    Article  Google Scholar 

  • Arnó, J., Rosell, J., Blanco, R., Ramos, M., & Martínez-Casasnovas, J. (2012). Spatial variability in grape yield and composition influenced by soil and crop nutrition characteristics. Precision Agriculture, 13, 393–410. doi:10.1007/s11119-011-9254-1.

    Article  Google Scholar 

  • Baluja, J., Tardaguila, J., Ayestaran, B., & Diago, M. P. (2013). Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey. Precision Agriculture, 14, 40–58. doi:10.1007/s11119-012-9282-5.

    Article  Google Scholar 

  • Bramley, R. (2005). Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11, 33–42. doi:10.1111/j.1755-0238.2005.tb00277.x.

    Article  Google Scholar 

  • Bramley, R. (2010). Precision viticulture: Mapping vineyard variability for improved quality outcomes. In A. G. Reynolds (Ed.), Managing wine quality, viticulture and wine quality (pp. 445–480). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Bramley, R., & Hamilton, R. (2004). Understanding variability in winegrape production systems. Australian Journal of Grape and Wine Research, 10, 32–45. doi:10.1111/j.1755-0238.2004.tb00006.x.

    Article  Google Scholar 

  • Bramley, R., Ouzman, J., & Thornton, C. (2011). Selective harvesting is a feasible and profitable strategy even when grape and wine production is geared towards large fermentation volumes. Australian Journal of Grape and Wine Research, 17(3), 298–305. doi:10.1111/j.1755-0238.2011.00151.x.

    Article  CAS  Google Scholar 

  • Brunetto, G., Ceretta, C. A., Kaminski, J., de Melo, G. W., Girotto, E., Trentin, E. E., et al. (2009). Produção e composição química da uva de videiras Cabernet Sauvignon submetidas à adubação nitrogenada (Production and chemical composition of Cabernet Sauvignon grape vines with nitrogen fertilization). Ciência Rural, 39(7), 2035–2041.

    Article  CAS  Google Scholar 

  • Cambardella, C. A., & Karlen, D. L. (1999). Spatial analysis of soil fertility parameters. Precision Agriculture, 1, 5–14.

    Article  Google Scholar 

  • Carey, V. A., Archer, E., Barbeau, G., & Saayman, D. (2008). Viticultural terroirs in Stellenbosch, South Africa. II. The interaction of Cabernet-Sauvignon and sauvignon blanc with environment. Journal International Des Sciences De La Vigne Et Du Vin, 42(4), 185–201.

    CAS  Google Scholar 

  • Carey, V. A., Archer, E., Barbeau, G., & Saayman, D. (2009). Viticultural terroirs in Stellenbosch, South Africa. III. Spatialisation of viticultural and oenological potential for Cabernet-Sauvignon and sauvignon blanc by means of a preliminary model. Journal International Des Sciences De La Vigne Et Du Vin, 43(1), 1–12.

    Google Scholar 

  • Cheng, G., He, Y., Yue, T., Wang, J., & Zhang, Z. (2014). Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules, 19(9), 13683–13703. doi:10.3390/molecules190913683.

    Article  PubMed  Google Scholar 

  • Cortell, J. M., Halbleib, M., Gallagher, A. V., Righetti, T. L., & Kennedy, J. A. (2005). Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot noir) and wine proanthocyanidins. Journal of Agricultural and Food Chemistry, 53(14), 5798–5808. doi:10.1021/jf0504770.

    Article  CAS  PubMed  Google Scholar 

  • Cortell, J. M., Sivertsen, H. K., Kennedy, J. A., & Heymann, H. (2008). Influence of vine vigor on Pinot noir fruit composition, wine chemical analysis, and wine sensory attributes. American Journal of Enology and Viticulture, 59(1), 1–10.

    CAS  Google Scholar 

  • Cozzolino, D., Dambergs, R. G., Janik, L., Cynkar, W. U., & Gishen, M. (2006). Analysis of grapes and wine by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 14(5), 279–289. doi:10.1255/jnirs.679.

    Article  CAS  Google Scholar 

  • Dai, Z. W., Ollat, N., Gomès, E., Decroocq, S., Tandonnet, J., Bordenave, L., et al. (2011). Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: A review. American Journal of Enology and Viticulture, 62(4), 413–425. doi:10.5344/ajev.2011.10116.

    Article  CAS  Google Scholar 

  • González-Fernández, A. B., Marcelo, V., Valenciano, J. B., & Rodríguez-Pérez, J. R. (2012a). Relationship between physical and chemical parameters for four commercial grape varieties from the Bierzo region (Spain). Scientia Horticulturae, 147(12), 111–117. doi:10.1016/j.scienta.2012.09.009.

    Article  Google Scholar 

  • González-Fernández, A. B., Rodríguez-Pérez, J. R., Blanco-Vázquez, M. A. (2012b). Evaluación de técnicas de interpolación espacial para obtención de cartografía de variables de interés vitivinícola. Estudio de caso en la D. O. Bierzo (León–España) (Evaluation of spatial interpolation techniques for the mapping of variables of interest in viticulture. Case study in the Bierzo DO (León–Spain)). In X Topcart 2012, I Congreso Iberoamericano de Geomática y Ciencias de la Tierra (pp. 49–52). Madrid.

  • Guidetti, R., Beghi, R., & Bodria, L. (2010). Evaluation of grape quality parameters by a simple VIS/NIR system. Transactions of ASABE, 53(2), 477–484.

    Article  CAS  Google Scholar 

  • Jackson, R. S. (2014). Vineyard practice. In R. S. Jackson (Ed.), Wine science (4th ed., pp. 143–306). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Jones, J. B., Jr. (2001). Laboratory guide for conducting soil tests and plant analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Karydas, C. G., Gitas, I. Z., Koutsogiannaki, E., Lydakis-Simantiris, N., & Silleos, G. (2009). Evaluation of spatial interpolation techniques for mapping agricultural topsoil properties in Crete. European Association of Remote Sensing Laboratories eProceedings, 8(1), 26–39.

    Google Scholar 

  • Keller, M. (2010). The science of grapevines: Anatomy and physiology. London: Academic Press.

    Google Scholar 

  • Kodur, S. (2011). Effects of juice pH and potassium on juice and wine quality, and regulation of potassium in grapevines through rootstocks (Vitis): A short review. Vitis, 50(1), 1–6.

    CAS  Google Scholar 

  • Kontoudakis, N., Esteruelas, M., Fort, F., Canals, J. M., De Freitas, V., & Zamora, F. (2011). Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chemistry, 124(3), 767–774. doi:10.1016/j.foodchem.2010.06.093.

    Article  CAS  Google Scholar 

  • Lam, N. S. N. (1983). Spatial interpolation methods: A review. The American Cartographer, 10(2), 129–150. doi:10.1559/152304083783914958.

    Article  Google Scholar 

  • Li, J., & Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists. Canberra: Geoscience Australia.

    Google Scholar 

  • Martinez-Casasnovas, J. A., Agelet-Fernandez, J., Arnó, J., & Ramos, M. (2012). Analysis of vineyard differential management zones and relation to vine development, grape maturity and quality. Spanish Journal of Agricultural Research, 10(2), 326–337.

    Article  Google Scholar 

  • Oliveira, A. F., Mercenaro, L., Del Caro, A., Pretti, L., & Nieddu, G. (2015). Distinctive anthocyanin accumulation responses to temperature and natural UV radiation of two field-grown (Vitis vinifera L.) cultivars. Molecules, 20(2), 2061–2080. doi:10.3390/molecules20022061.

    Article  Google Scholar 

  • Perez-Kuroki, A., Shanmuganathan, S., Scannavino, F., Jr., Sallis, P., Narayanan, A. (2011). Establishing the correlation between soil and crop production to optimize wine quality. In F. Chan, D. Marinova & R. S. Anderssen (Eds.) MODSIM2011, 19th international congress on modelling and simulation. Modelling and simulation society of Australia and New Zealand, (pp. 1132–1138). Perth.

  • Reynolds, A. G., & Rezaei, J. H. (2014). Spatial variability in Ontario Cabernet Franc vineyards: I. Interrelationships among soil composition, soil texture, soil and vine water status. Journal of Applied Horticulture, 16(1), 3–23.

    Google Scholar 

  • Ribereau-Gayon, P., Dubourdieu, D., Doneche, B., & Lonvaud, A. (2006). Handbook of enology. The microbiology of wine and vinifications (2nd ed., Vol. 1). Chichester: Wiley.

    Google Scholar 

  • Santesteban, L., Guillaume, S., Royo, J., & Tisseyre, B. (2013). Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precision Agriculture, 14(1), 2–17. doi:10.1007/s11119-012-9268-3.

    Article  Google Scholar 

  • Santos, A. O., Wample, R. L., Sachidhanantham, S., & Kaye, O. (2012). Grape quality mapping for vineyard differential harvesting. Brazilian Archives of Biology and Technology, 55(2), 193–204. doi:10.1590/S1516-89132012000200003.

    Article  CAS  Google Scholar 

  • Saxton, V. P., Creasy, G. L., Paterson, A. M., & Trought, M. C. T. (2009). Behavioural responses of European blackbirds and Australasian silvereyes to varying acid and sugar levels in artificial grapes. American Journal of Enology and Viticulture, 60(1), 82–86.

    CAS  Google Scholar 

  • Scarlett, N. J., Bramley, R. G. V., & Siebert, T. E. (2014). Within-vineyard variation in the ‘pepper’ compound rotundone is spatially structured and related to variation in the land underlying the vineyard. Australian Journal of Grape and Wine Research, 20(2), 214–222. doi:10.1111/ajgw.12075.

    Article  CAS  Google Scholar 

  • Szymanowski, M., Kryza, M., Smaza, M. (2007). A GIS approach to spatialize selected climatological parameters for wine-growing. In K. Střelcová, J. Škvarenina & M. Blaženec (Eds.) Bioclimatology and natural hazards. International scientific conference, Poľana nad Detvou, Slovakia (pp. 17–20).

  • Tagarakis, A., Koundouras, S., Papageorgiou, E., Dikopoulou, Z., Fountas, S., & Gemtos, T. (2014). A fuzzy inference system to model grape quality in vineyards. Precision Agriculture, 15, 1–24. doi:10.1007/s11119-014-9354-9.

    Article  Google Scholar 

  • Tardaguila, J., Baluja, J., Arpon, L., Balda, P., & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture, 12, 762–773. doi:10.1007/s11119-011-9219-4.

    Article  Google Scholar 

  • Taylor, J. A., Praat, J. P., & Bollen, F. (2007). Spatial variability of kiwifruit quality in orchards and its implications for sampling and mapping. HortScience, 42(2), 246–250.

    Google Scholar 

  • Urretavizcaya, I., Santesteban, L. G., Tisseyre, B., Guillaume, S., Miranda, C., & Royo, J. B. (2014). Oenological significance of vineyard management zones delineated using early grape sampling. Precision Agriculture, 15, 111–129. doi:10.1007/s11119-013-9328-3.

    Article  Google Scholar 

  • Vasconcelos, M. C., & Castagnoli, S. (2000). Leaf canopy structure and vine performance. American Journal of Enology and Viticulture, 51, 390–396.

    Google Scholar 

  • Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., Kerridge, G. H., Rühl, E. H., & Nicholas, P. R. (2005). Shiraz berry size in relation to seed number and implications for juice and wine composition. Australian Journal of Grape and Wine Research, 11(1), 2–8.

    Article  CAS  Google Scholar 

  • Yasrebi, J., Saffari, M., Fathi, H., Karimian, N., Moazallahi, M., & Gazni, R. (2009). Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Research Journal of Biological Sciences, 4(1), 93–102.

    Google Scholar 

  • Zandi, S., Ghobakhlou, A., Sallis, P. (2011). Evaluation of spatial interpolation techniques for mapping soil pH. In F. Chan, D. Marinova & R. S. Anderssen (Eds.) MODSIM2011, 19th international congress on modelling and simulation. Modelling and simulation society of Australia and New Zealand, (pp. 1153–1159). Perth.

Download references

Acknowledgments

The authors acknowledge the assistance of the Ribas del Cúa SA winery and the financial support of the Junta de Castilla y León (with ITACYL funding the GEOVID project). Ana Belén González-Fernández gratefully acknowledges financial support provided by the Education Department of the Junta de Castilla y León and the European Social Fund (Regional Strategy for Scientific Research, Technical Development and Innovation 2007–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Belén González-Fernández.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Fernández, A.B., Rodríguez-Pérez, J.R., Ablanedo, E.S. et al. Vineyard zone delineation by cluster classification based on annual grape and vine characteristics. Precision Agric 18, 525–573 (2017). https://doi.org/10.1007/s11119-016-9475-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9475-4

Keywords

Navigation