Skip to main content
Log in

Effect of H12MDI isomer composition on mechanical and physico-chemical properties of polyurethanes based on amorphous and semicrystalline soft segments

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two series of segmented thermoplastic polyurethanes were synthesized having 33 wt % hard segment based on 4,4′-dicyclohexyl methane diisocyanate with different transtrans isomer contents and 1,3-propanediol chain extender. The soft segments were based on poly(hexamethylene–pentamethylene carbonate)diol and poly(butylene sebacate)diol, amorphous and semicrystalline polyol, respectively. 4,4′-Dicyclohexyl methane diisocyanate with different transtrans isomer contents were obtained by fractional crystallization of commercial diisocyanate and were characterized by differential scanning calorimetry and nuclear magnetic resonance spectroscopy. 4,4′-Dicyclohexyl methane diisocyanate transtrans isomer lead to some interesting properties in the synthesized polyurethanes, due to the more ordered hard domains formed by packing of transtrans 4,4′-dicyclohexyl methane diisocyanate. Thereby, as 4,4′-dicyclohexyl methane diisocyanate transtrans isomer content increased, a better phase separated structure was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Król P (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 52:915–1015. doi:10.1016/j.pmatsci.2006.11.001

    Article  Google Scholar 

  2. Meier-Westhues U (2007) Polyurethanes: coatings, adhesives and sealants. Vincentz Network GmbH & Co KG, Hannover

    Google Scholar 

  3. Thomson T (2004) Polyurethanes as specialty chemicals. Principles and applications. CRC Press, West Newbury, MA

    Book  Google Scholar 

  4. Randall D, Lee S (2003) The polyurethanes book. Wiley, London

    Google Scholar 

  5. Fernández-d’Arlas B, Ramos JA, Saralegi A, Corcuera M, Mondragon I, Eceiza A (2012) Molecular engineering of elastic and strong supertough polyurethanes. Macromolecules 45:3436–3443. doi:10.1021/ma300397e

    Article  Google Scholar 

  6. Macocinschi D, Filip D, Vlad S, Cristea M, Butnaru M (2009) Segmented biopolyurethanes for medical applications. J Mater Sci Mater Med 20:1659–1668. doi:10.1007/s10856-009-3731-3

    Article  CAS  Google Scholar 

  7. Fong N, Simmons A, Poole-Warren L (2011) Elastomeric nanocomposites for biomedical applications. Recent Adv Elast Nanocompos 9:255–278. doi:10.1007/978-3-642-15787-5_10

    Article  Google Scholar 

  8. Guelcher SA (2008) Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Prev 14:3–17. doi:10.1089/teb.2007.0133

    Article  CAS  Google Scholar 

  9. McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS (2003) Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 66:586–595. doi:10.1002/jbm.a.10504

    Article  Google Scholar 

  10. Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M (2003) The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 24:5163–5171. doi:10.1016/S0142-9612(03)00462-9

    Article  CAS  Google Scholar 

  11. Vermette P, Griesser HJ, Laroche G, Guidoin R (2001) Biomedical applications of polyurethanes (Tissue Engineering Intelligence Unit). Landes Bioscience, Austin, TX

    Google Scholar 

  12. Macocinschi D, Filip D, Vlad S (2010) Surface and mechanical properties of some new biopolyurethane composites. Polym Compos 31:1956–1964. doi:10.1002/pc.20994

    Article  CAS  Google Scholar 

  13. Lee DK, Tsai HB, Standford JL (1996) Phase separation and phase inversion of polyurethane networks. J Polym Res 3:159–163. doi:10.1007/BF01494525

    Article  CAS  Google Scholar 

  14. Sriram V, Radhakrishnan G (2005) Novel short-chain crosslinked cationomeric polyurethanes. Polym Bull 55:165–172. doi:10.1007/s00289-005-0425-y

    Article  CAS  Google Scholar 

  15. Yilgor I, Yilgor E, Das S, Wilkes GL (2009) Time-dependent morphology development in segmented polyetherurea copolymers based on aromatic diisocyanates. J Polym Sci B 47:471–483. doi:10.1002/polb.21652

    Article  CAS  Google Scholar 

  16. Tsui YK, Gogolewski S (2009) Microporous biodegradable polyurethane membranes for tissue engineering. J Mater Sci Mater Med 20:1729–1741. doi:10.1007/s10856-009-3722-4

    Article  CAS  Google Scholar 

  17. Guelcher SA, Gallagher KM, Didier JE, Klinedinst DB, Doctor JS, Goldstein AS, Wilkes GL, Beckman EJ, Hollinger JO (2005) Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater 1:471–484. doi:10.1016/j.actbio.2005.02.007

    Article  Google Scholar 

  18. Shelke NB, Sairam M, Halligudi SB, Aminabhavi TM (2007) Development of transdermal drug-delivery films with castor-oil-based polyurethanes. J Appl Polym Sci 103:779–788. doi:10.1002/app.25070

    Article  CAS  Google Scholar 

  19. Park JH, Bae SY, Kim BK (2012) Hyperbranched waterborne polyurethanes. Polym Bull. doi:10.1007/s00289-012-0891-y

  20. Choi SJ, Lee JH, Lee YH, Hwang DY, Kim HD (2011) Synthesis and properties of polyurethane-urea-based liquid bandage materials. J Appl Polym Sci 121:3516–3524. doi:10.1002/app.34135

    Article  CAS  Google Scholar 

  21. Ryszkowska J, Auguscik M, Sheikh A, Boccaccini AR (2010) Biodegradable polyurethane composite scaffolds containing bioglass for bone tissue engineering. Compos Sci Technol 70:1894–1908. doi:10.1016/j.compscitech.2010.05.011

    Article  CAS  Google Scholar 

  22. Bil M, Ryszkowska J, Wozniak P, Kurzydlkowski KJ, Lewandowska-Szumiel M (2010) Optimization of the structure of polyurethanes for bone tissue engineering applications. Acta Biomater 6:2501–2510. doi:10.1016/j.actbio.2009.08.037

    Article  CAS  Google Scholar 

  23. Solís-Correa RE, Vargas-Coronado R, Aguilar-Vega M, Cauich-Rodríguez JV, San Román J, Marcos A (2007) Synthesis of HMDI-based segmented polyurethanes and their use in the manufacture of elastomeric composites for cardiovascular applications. J Biomater Sci 18:561–578. doi:10.1163/156856207780852488

    Article  Google Scholar 

  24. Jayabalan M, Lizymol PP, Thomas V (2000) Synthesis of hydrolytically stable low elastic modulus polyurethane–urea for biomedical applications. Polym Int 49:88–92. doi:10.1002/(SICI)1097-0126(200001)49:1<88

    Article  CAS  Google Scholar 

  25. Okrasa L, Czech P, Boiteux G, Méchin F, Ulanski J (2008) Molecular dynamics in polyester- or polyether–urethane networks based on different diisocycanates. Polymer 49:2662–2668. doi:10.1016/j.polymer.2008.04.016

    Article  CAS  Google Scholar 

  26. Seneker SD, Born L, Schmelzer HG, Eisenbach CD, Fischer K (1992) Diisocyanato dicyclohexylmethane: structure/property relationships of its geometrical isomers in polyurethane elastomers. Colloid Polym Sci 270:543–548. doi:10.1007/BF00658285

    Article  CAS  Google Scholar 

  27. Wong S, Frisch KC, Byrne CA, Mack DP, Schneider NS (1984) Structure–property relationships of transparent aliphatic polyurethane elastomers from the geometric isomers of methylene bis(4-cyclohexyl isocyanate). Adv Urethane Sci Tec 9:77–101

    CAS  Google Scholar 

  28. Rosthauser JW, Haider KW, Steinlein C, Eisenbach CD (1997) Mechanical and dynamic mechanical properties of polyurethane and polyurethane/polyurea elastomers based on 4,4′-diisocyanatodicyclohexyl methane. J Appl Polym Sci 64:957–970. doi:10.1002/(SICI)1097-4628(19970502)64:5<957

    Article  CAS  Google Scholar 

  29. Nigar M, Blackwell J, Chvalun SN, Seneker SD, Schemelzer HG (1996) The structure of the hard domains in trans, trans-HMDI-based polyurethane elastomers. Acta Polym 47:48–54. doi:10.1002/actp.1996.010470107

    Article  CAS  Google Scholar 

  30. Adhikari R, Gunatillake PA, Meijs GF, McCarthy SJ (1999) The effect of diisocyanate isomer composition on properties and morphology of polyurethanes based on 4,4′-dicyclohexyl methane diisocyanate and mixed macrodiols (PDMS-PHMO). J Appl Polym Sci 73:573–582. doi:10.1002/(SICI)1097-4628(19990725)73:4<573

    Article  CAS  Google Scholar 

  31. Byrne CA, Mack DP, Sloan JM (1985) A study of aliphatic polyurethane elastomers prepared from diisocyanate isomer mixtures. Rubber Chem Technol 58:985–996. doi:10.5254/1.3536109

    Article  CAS  Google Scholar 

  32. Saralegi A, Rueda L, Fernández-d’Arlas B, Mondragon I, Eceiza A, Corcuera MA (2013) Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on the morphology-final properties. Polym Int 62:106–115. doi:10.1002/pi.4330

    Article  CAS  Google Scholar 

  33. Eceiza A, Zabala J, Egiburu JL, Corcuera MA, Mondragon I, Pascault JP (1999) Reaction kinetics of tolyl isocyanate with polyhexamethylene–pentamethylene carbonate diol. Eur Polym J 35:1949–1958. doi:10.1016/S0014-3057(98)00295-X

    Article  CAS  Google Scholar 

  34. Fernandez d’Arlas B, Rueda L, Stefani PM, de la Caba K, Mondragon I, Eceiza A (2007) Kinetic and thermodynamic studies of the formation of a polyurethane based on 1,6-hexamethylene diisocyanate and poly(carbonate-co-ester)diol. Thermochim Acta 459:94–103. doi:10.1016/j.tca.2007.03.021

    Article  Google Scholar 

  35. Hablot E, Zheng D, Bouquey M, Avérous L (2008) Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties. Macromol Mater Eng 293:922–929. doi:10.1002/mame.200800185

    Article  CAS  Google Scholar 

  36. Semsarzadeh MA, Navarchian AH (2003) Effects of NCO/OH ratio and catalyst concentration on structure, thermal stability, and crosslink density of poly(urethane–isocyanurate). J Appl Polym Sci 90:963–972. doi:10.1002/app.12691

    Article  CAS  Google Scholar 

  37. Coleman MM, Lee KH, Skrovanek DJ, Painter PC (1986) Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19:2149–2157. doi:10.1021/ma00162a008

    Article  CAS  Google Scholar 

  38. Sung C, Schneider NS (1975) Infrared studies of hydrogen bonding in toluene diisocyanate based polyurethanes. Macromolecules 8:68–73. doi:10.1021/ma60043a015

    Article  CAS  Google Scholar 

  39. Teo L, Chen C, Kuo JF (1997) Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane-urea)s. Macromolecules 30:1793–1799. doi:10.1021/ma961035f

    Article  CAS  Google Scholar 

  40. Fernández d’Arlas B, Rueda L, de la Caba K, Mondragon I, Eceiza A (2008) Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI. Polym Eng Sci 48:519–529. doi:10.1002/pen.20983

    Article  Google Scholar 

  41. Rueda-Larraz L, Fernández d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Synthesis and microstructure-mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur Polym J 45:2096–2109. doi:10.1016/j.eurpolymj.2009.03.013

    Article  CAS  Google Scholar 

  42. Koberstein JT, Russell TP (1986) Simultaneous SAXS–DSC study of multiple endothermic behaviour in polyether-based polyurethane block copolymers. Macromolecules 19:714–720. doi:10.1021/ma00157a039

    Article  CAS  Google Scholar 

  43. Saiani A, Daunch WA, Verbeke H, Leenslag JW, Higgins JS (2001) Origin of multiple melting endotherms in a high hard block content polyurethane. 1. Thermodynamic investigation. Macromolecules 34:9059–9068. doi:10.1021/ma0105993

    Article  CAS  Google Scholar 

  44. Saiani A, Rochas C, Eeckhaut G, Daunch WA, Leenslag JW, Higgins JS (2004) Origin of multiple melting endotherms in a high hard block content polyurethane. 2. Structural investigation. Macromolecules 37:1411–1421. doi:10.1021/ma034604

    Article  CAS  Google Scholar 

  45. Saiani A, Novak L, Rodier G, Eeckhaut G, Leenslag JW, Higgins JS (2007) Origin of multiple melting endotherms in a high hard block content polyurethane: effect of annealing temperature. Macromolecules 40:7252–7262. doi:10.1021/ma070332p

    Article  CAS  Google Scholar 

  46. Korley L, Pate B, Thomas E, Hammond P (2006) Effect of the degree of soft and hard segment ordering on the morphology and mechanical behaviour of semicrystalline segmented polyurethanes. Polymer 47:3073–3082. doi:10.1016/j.polymer.2006.02.093

    Article  CAS  Google Scholar 

  47. Oprea S (2011) Molecular dynamics, thermo-mechanical and optical studies on benzidine chain extended polyurethane–urea. J Polym Res 18:1777–1785. doi:10.1007/s10965-011-9584-8

    Article  CAS  Google Scholar 

  48. Zheng J, Ozisik R, Siegel RW (2006) Phase separation and mechanical responses of polyurethane nanocomposites. Polymer 47:7786–7794. doi:10.1016/j.polymer.2006.08.068

    Article  CAS  Google Scholar 

  49. Bagdi K, Molnár K, Wacha A, Bóta A, Pukánszky B (2011) Hierarchical structure of phase-separated segmented polyurethane elastomers and its effect on properties. Polym Int 60:529–536. doi:10.1002/pi.3003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Basque Government in the frame of Grupos Consolidados (IT-776-13), and Saiotek 2011 (SPE11UN132) is gratefully acknowledged. In addition, A. S. thanks Eusko Jaurlaritza/Gobierno Vasco (BFI-09-167). Moreover, we are grateful to the ‘Macrobehaviour – Mesostructure – Nanotechnology’ and ‘NMR Guipuzkoa Campus’ SGIker units of the UPV/EHU. This paper is dedicated In memoriam of Dr. Iñaki Mondragon Egaña.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Angeles Corcuera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saralegi, A., Etxeberria, A., Fernández-d’Arlas, B. et al. Effect of H12MDI isomer composition on mechanical and physico-chemical properties of polyurethanes based on amorphous and semicrystalline soft segments. Polym. Bull. 70, 2193–2210 (2013). https://doi.org/10.1007/s00289-013-0930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0930-3

Keywords

Navigation