Skip to main content

Advertisement

Log in

Feeding biomechanics of five demersal Antarctic fishes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

There is scant information available on the ecomorphology of Antarctic fishes, and especially on their feeding capabilities. We measured interspecific variation in mechanical advantage (MA), force-producing capability, and suction index for the jaws of the five dominant taxa of high-Antarctic fishes: the nototheniid Trematomus bernacchii; the zoarcids Pachycara brachycephalum, Lycodichthys dearborni, and Ophthalmolycus amberensis; and the liparid Paraliparis devriesi. Analysis of variance indicated significant differences in jaw metrics, and ordinations of morphological traits identified three loosely defined groups reflecting their family-level taxonomy. Principal component analyses showed distinct segregation between the nototheniid and the liparid, indicating that they are at the extremes of the feeding performance continuum. The zoarcids fell in the middle, suggesting that they utilize a combination of feeding modes to capture prey. The liparid had the lowest MA and bite force, but a large epaxialis implied a ram-suction-feeding mode. The large adductor mandibulae in the zoarcids P. brachycephalum and L. dearborni suggest that they are capable of grasping mobile prey and manipulating sedentary, hard-shelled macroinvertebrates. The zoarcids had a smaller epaxialis than the liparid and may not be as efficient as suction-feeders. Values for mechanical advantage ratios and suction indices in Antarctic fishes were within the range known for non-Antarctic fishes. The five Antarctic species do not possess dentition specialized for durophagous feeding; however, the high mechanical advantage ratio in the nototheniid and, to a lesser extent, in the zoarcids, suggests that durophagy may be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson ME (1990) Zoarcidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, pp 256–276

    Google Scholar 

  • Anderson ME (1994) Systematics and osteology of the Zoarcidae (Teleostei: Perciformes). Ichthyol Bull JLB Smith Inst Ichthyol 60:1–120

    Google Scholar 

  • Andriashev AP (1965) A general review of the Antarctic fish fauna. In: van Oye P, van Mieghem J (eds) Biogeography and ecology in Antarctica, Monographiae Biologicae, vol XV. Junk, The Hague, pp 491–550

    Chapter  Google Scholar 

  • Andriashev AP (1980) A new liparid fish in McMurdo Sound. Antarct J US 15:150

    Google Scholar 

  • Andriashev AP (1991) Possible pathways of Paraliparis (Pisces: Liparididae) and some other North Pacific secondarily deep-sea fishes into North Atlantic and Arctic depths. Polar Biol 11:213–218

    Article  Google Scholar 

  • Andriashev AP (2003) Liparid Fishes (Liparidae, Scorpaeniformes) of the Southern Ocean and Adjacent Waters. Series “Biological Results of the Russian Antarctic Expeditions”, Vol. 9. Explorations of the Fauna of the Seas, vol 53(61). Russian Academy of Sciences, Zoological Institute, St. Petersburg

  • Andriashev AP, Stein DL (1998) Review of the snailfish genus Careproctus (Liparidae, Scorpaeniformes) in Antarctic and adjacent waters. Contrib Sci Nat Hist Mus Los Angeles Co 470:1–63

    Google Scholar 

  • Aronson RB, Blake DB (2001) Global climate change and the origin of modern benthic communities in Antarctica. Am Zool 41:27–39

    Article  Google Scholar 

  • Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2007) Climate change and invasibility of the Antarctic benthos. Annu Rev Ecol Evol Syst 38:129–154

    Article  Google Scholar 

  • Balushkin AV (2012) Volodichthys gen. nov. new species of the primitive snailfish (Liparidae: Scorpaeniformes) of the Southern Hemisphere. Description of new species V. solovjevae sp. nov. (Cooperation Sea, the Antarctic). J Ichthyol 52:1–10

    Article  Google Scholar 

  • Barnett A, Bellwood DR, Hoey AS (2006) Trophic ecomorphology of cardinalfish. Mar Ecol Prog Ser 322:249–257

    Article  Google Scholar 

  • Barrera E, Tevesz MJS, Carter JG (1990) Variations in oxygen and carbon isotopic compositions and microstructure of the shell Adamussium colbecki (Bivalvia). Palaios 5:149–159

    Article  Google Scholar 

  • Barrera-Oro E (2002) The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct Sci 14:293–309

    Article  Google Scholar 

  • Belman BW, Anderson ME (1979) Aquarium observations on feeding by Melanostigma pammelas (Pisces: Zoarcidae). Copeia 2:366–369

    Article  Google Scholar 

  • Boulenger GA (1902) Pisces report on the collections of natural history made in the Antarctic Regions During the Voyage of the “Southern Cross”. British Museum (Natural History), London, pp 174–189

  • Carroll AM, Wainwright PC, Huskey SH, Collar DC, Turingan RG (2004) Morphology predicts suction feeding performance in centrarchid fishes. J Exp Biol 207:3873–3881

    Article  PubMed  Google Scholar 

  • Casaux R, Barrera-Oro E, Baroni A, Ramón A (2003) Ecology of inshore notothenioid fish from the Danco Coast, Antarctic Peninsula. Polar Biol 26:157–165

    Article  Google Scholar 

  • Clarke A, Aronson RB, Crame JA, Gili J-M, Blake DB (2004) Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct Sci 16:559–568

    Article  Google Scholar 

  • Collar DC, Wainwright PC (2006) Discordance between morphological and mechanical diversity in the feeding mechanism of centrarchid fishes. Evolution 60:2575–2584

    Article  PubMed  Google Scholar 

  • Daniels RA (1982) Feeding ecology of some fishes of the Antarctic Peninsula. Fish Bull US 80:575–588

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Article  Google Scholar 

  • Eastman JT, Lannoo MJ (1998) Morphology of the brain and sense organs in the snailfish Paraliparis devriesi: neural convergence and sensory compensation on the Antarctic shelf. J Morphol 237:213–236

    Article  CAS  PubMed  Google Scholar 

  • Eastman JT, Hikida RS, DeVries AL (1994) Buoyancy studies and microscopy of skin and subdermal extracellular matrix of the Antarctic snailfish, Paraliparis devriesi. J Morphol 220:85–101

    Article  Google Scholar 

  • Eastman JT, Witmer LM, Ridgely RC, Kuhn KL (2014) Divergence in skeletal mass and bone morphology in Antarctic notothenioid fishes. J Morphol 275:841–861

    Article  PubMed  Google Scholar 

  • Fanta E, Rios FS, Meyer AA (2001a) Behaviour of the Antarctic fish Ophthalmolycus amberensis (Zoarcidae) on gravel and muddy bottom. Antarct Rec Natl Inst Polar Res Tokyo 45:13–26

    Google Scholar 

  • Fanta E, Rios FS, Meyer AA, Grötzner SR, Zaleski T (2001b) Chemical and visual sensory systems in feeding behaviour of the Antarctic fish Ophthalmolycus amberensis (Zoarcidae). Antarct Rec Natl Inst Polar Res Tokyo 45:27–42

    Google Scholar 

  • Fink WL (1981) Ontogeny and phylogeny of tooth attachment mode in actinopterygian fishes. J Morphol 167:167–184

    Article  Google Scholar 

  • Fujii T, Jamieson AJ, Solan M, Bagley PM, Priede IG (2010) A large aggregation of liparids at 7703 meters and a reappraisal of the abundance and diversity of hadal fish. Bioscience 60:506–515

    Article  Google Scholar 

  • Galis F (1993) Interactions between the pharyngeal jaw apparatus, feeding behaviour, and ontogeny in the cichlid fish, Haplochromis piceatus: a study of morphological constraints in evolutionary ecology. J Exp Zool 267:137–154

    Article  Google Scholar 

  • Gon O, Heemstra PC (eds) (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown

    Google Scholar 

  • Grubich J (2003) Morphological convergence of pharyngeal jaw structure in durophagous fish. Biol J Linn Soc 80:147–165

    Article  Google Scholar 

  • Higham TE, Day SW, Wainwright PC (2005) Sucking while swimming: evaluating the effects of ram speed on suction generation in bluegill sunfish Lepomis macrochirus using digital particle image velocimetry. J Exp Biol 208:2653–2660

    Article  PubMed  Google Scholar 

  • Hureau J-C (1970) Biologie comparée de quelques Poissons antarctiques (Nototheniidae). Bull Inst Océanogr Monaco 68:1–244

    Google Scholar 

  • Huskey SH, Turingan RG (2001) Variation in prey-resource utilization and oral jaw gape between two populations of largemouth bass, Micropterus salmoides. Environ Biol Fish 61:185–194

    Article  Google Scholar 

  • Iglésias SP, Dettai A, Ozouf-Costaz C (2012) Barbapellis pterygalces, new genus and species of a singular eelpout (Zoarcidae: Teleostei) from the Antarctic deep waters. Polar Biol 35:215–220

    Article  Google Scholar 

  • Il’insky EN, Kuznetsova NA (2010) Spatial and length distribution, sex composition, and feeding of the notched-fin eelpout Zoarces elongatus (Perciformes: Zoarcidae) in the Sea of Okhotsk. Russ J Mar Biol 36:252–257

    Article  Google Scholar 

  • Iwami T (2004) Comparative morphology of the adductor mandibulae musculature of notothenioid fishes (Pisces, Perciformes). Antarct Sci 16:17–21

    Article  Google Scholar 

  • Iwami T, Kock K-H (1990) Channichthyidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, pp 381–399

    Google Scholar 

  • Jamieson AJ, Fujii T, Solan M, Matsumoto AK, Bagley PM, Priede IG (2009) Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour. Proc R Soc B 276:1037–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiest KA (1993) A relationship of diet to prey abundance and the foraging behavior of Trematomus bernacchii. Polar Biol 13:291–296

    Article  Google Scholar 

  • Klingenberg CP, Ekau W (1996) A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol J Linn Soc 59:143–177

    Article  Google Scholar 

  • Kock K-H (2005) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, part I. Polar Biol 28:862–895

    Article  Google Scholar 

  • Kock K-H, Gröger J, Jones CD (2013) Interannual variability in the feeding of ice fish (Notothenioidei, Channichthyidae) in the southern Scotia Arc and the Antarctic Peninsula region (CCAMLR subareas 48.1 and 48.2). Polar Biol 36:1451–1462

    Article  Google Scholar 

  • La Mesa M, Dalú M, Vacchi M (2004a) Trophic ecology of the emerald notothen Trematomus bernacchii (Pisces, Nototheniidae) from Terra Nova Bay, Ross Sea, Antarctica. Polar Biol 27:721–728

    Article  Google Scholar 

  • La Mesa M, Eastman JT, Vacchi M (2004b) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338

    Article  Google Scholar 

  • Lannoo MJ, Eastman JT (2000) Nervous and sensory system correlates of an epibenthic evolutionary radiation in Antarctic notothenioid fishes, genus Trematomus (Perciformes; Nototheniidae). J Morphol 245:67–79

    Article  CAS  PubMed  Google Scholar 

  • Lannoo MJ, Eastman JT (2006) Brain and sensory organ morphology in Antarctic eelpouts (Perciformes: Zoarcidae: Lycodinae). J Morphol 267:115–127

    Article  PubMed  Google Scholar 

  • Lauder GV (1982) Patterns of evolution in the feeding mechanism of actinopterygian fishes. Am Zool 22:275–285

    Google Scholar 

  • Lauder GV (1983) Prey capture hydrodynamics in fishes: experimental tests of two models. J Exp Biol 104:1–13

    Google Scholar 

  • Liem KF (1980) Acquisition of energy by teleosts: adaptive mechanisms and evolutionary patterns. In: Ali MA (ed) Environmental physiology of fishes. Plenum Press, New York, pp 229–334

    Google Scholar 

  • Liem KF (1993) Ecomorphology of the teleostean skull. In: Hanken J, Hall BK (eds) The skull, vol 3, functional and evolutionary mechanisms. University of Chicago Press, Chicago, pp 422–452

    Google Scholar 

  • Matallanas J (2009) Description of Gosztonyia antarctica, a new genus and species of Zoarcidae (Teleostei: Perciformes) from the Antarctic Ocean. Polar Biol 32:15–19

    Article  Google Scholar 

  • Matallanas J (2010) Description of two new genera, Santelmoa and Bentartia and two new species of Zoarcidae (Teleostei, Perciformes) from the Southern Ocean. Polar Biol 33:659–672

    Article  Google Scholar 

  • Matallanas J, Olaso I (2007) Fishes of the Bellingshausen Sea and Peter I Island. Polar Biol 30:333–341

    Article  Google Scholar 

  • Matallanas J, Corbella C, Møller PR (2012) Description of two new species of Santelmoa (Teleostei, Zoarcidae) from the Southern Ocean. Polar Biol 35:1395–1405

    Article  Google Scholar 

  • Montgomery JC, Foster BA, Milton RC, Carr E (1993) Spatial and temporal variations in the diet of nototheniid fish in McMurdo Sound, Antarctica. Polar Biol 13:429–431

    Article  Google Scholar 

  • Moreno CA (1980) Observations on food and reproduction in Trematomus bernacchii (Pisces: Nototheniidae) from the Palmer Archipelago, Antarctica. Copeia 1:171–173

    Article  Google Scholar 

  • Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, Zane L, Fernández DA, Jones CD (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci USA 109:3434–3439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nemeth DH (1997) Modulation of attach behavior and its effect on feeding performance in the trophic generalist fish, Hexagrammos decagrammus. J Exp Biol 200:2155–2164

    PubMed  Google Scholar 

  • North AW (1996) Locomotory activity and behaviour of the Antarctic teleost Notothenia coriiceps. Mar Biol 126:125–132

    Article  Google Scholar 

  • Norton SF, Brainerd EL (1993) Convergence in the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae. J Exp Biol 176:11–29

    Google Scholar 

  • Reid WDK, Clarke S, Collins MA, Belchier M (2007) Distribution and ecology of Chaenocephalus aceratus (Channichthyidae) around South Georgia and Shag Rocks (Southern Ocean). Polar Biol 30:1523–1533

    Article  Google Scholar 

  • Sancho G, Fisher CR, Mills S, Micheli F, Johnson GA, Lenihan HS, Peterson CH, Mullineaux LS (2005) Selective predation by the zoarcids fish Thermarces cerberus at hydrothermal vents. Deep-Sea Res I 52:837–844

    Article  Google Scholar 

  • Scharf FS, Juanes F, Rountree RA (2000) Predator size-prey size relationships of marine fish predators: interspecific variation and effects of the ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208:229–248

    Article  Google Scholar 

  • Smith CR, Grange LJ, Honig DL, Naudts L, Huber B, Guidi L, Domack E (2012) A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts. Proc R Soc B 279:1017–1026

    Article  PubMed Central  PubMed  Google Scholar 

  • Stein DL (2012) Snailfishes (family Liparidae) of the Ross Sea, Antarctica, and closely adjacent waters. Zootaxa 3285:1–120

    Google Scholar 

  • Stein DL, Felley JD, Vecchione M (2005) ROV observations of benthic fishes in the Northwind and Canada Basins, Arctic Ocean. Polar Biol 28:232–237

    Article  Google Scholar 

  • Targett TE (1981) Trophic ecology and structure of coastal Antarctic fish communities. Mar Ecol Prog Ser 4:243–263

    Article  Google Scholar 

  • Turingan RG, Wainwright PC, Hensley DA (1995) Interpopulation variation in prey use and feeding biomechanics in Caribbean triggerfishes. Oecologia 102:296–304

    Article  Google Scholar 

  • Vacchi M, La Mesa M, Castelli A (1994) Diet of two coastal nototheniid fish from Terra Nova Bay, Ross Sea. Antarct Sci 6:61–65

    Google Scholar 

  • Vacchi M, Cattaneo-Vietti R, Chiantore M, Dalu M (2000) Predator-prey relationship between the nototheniid fish Trematomus bernacchii and the Antarctic scallop Adamussium colbecki at Terra Nova Bay (Ross Sea). Antarct Sci 12:64–68

    Article  Google Scholar 

  • Wainwright PC (1988) Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes. Ecology 69:635–645

    Article  Google Scholar 

  • Wainwright PC (1991) Experimental functional anatomy for ecological problems. Am Zool 31:680–693

    Google Scholar 

  • Wainwright PC (1996) Ecological explanation through functional morphology: the feeding biology of sunfishes. Ecology 77:1336–1343

    Article  Google Scholar 

  • Wainwright PC (2006) Functional morphology of the pharyngeal jaw apparatus. In: Shadwick RE, Lauder GV (eds) Fish biomechanics, vol 23, fish physiology. Elsevier Academic Press, San Diego, pp 77–101

    Google Scholar 

  • Wainwright PC, Bellwood DR (2002) Ecomorphology of feeding in coral reef fishes. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 33–55

    Chapter  Google Scholar 

  • Wainwright PC, Richard BA (1995) Predicting patterns of prey use from morphology of fishes. Environ Biol Fish 44:97–113

    Article  Google Scholar 

  • Wainwright PC, Ferry-Graham LA, Waltzek TB, Carroll AM, Hulsey CD, Grubich JR (2001) Evaluating the use of ram and suction during prey capture by cichlid fishes. J Exp Biol 204:303–93051

    Google Scholar 

  • Wainwright P, Carroll M, Collar DC, Day SW, Higham TE, Holzman RA (2007) Suction feeding mechanics, performance, and diversity in fishes. Integr Comp Biol 47:96–106

    Article  PubMed  Google Scholar 

  • Watson S-A, Peck LS, Tyler PA, Southgate PC, Tan KS, Day RW, Morley SA (2012) Marine invertebrate skeleton size varies with latitude, temperature, and carbonate saturation: implications for global change and ocean acidification. Glob Change Biol 18:3026–3038

    Article  Google Scholar 

  • Westneat MW (2004) Evolution of levers and linkages in the feeding mechanisms of fishes. Integr Comp Biol 44:378–389

    Article  PubMed  Google Scholar 

  • Westneat MW (2006) Skull biomechanics and suction feeding in fishes. In: Shadwick RE, Lauder GV (eds) Fish biomechanics, vol 23, fish physiology. Elsevier Academic Press, San Diego, pp 29–75

    Google Scholar 

  • Winterbottom R (1974) A descriptive synonymy of the striated muscles of the Teleostei. Proc Acad Nat Sci Phila 125:225–317

    Google Scholar 

Download references

Acknowledgments

We thank K.E. Smith, S. Thatje, L.T. Toth, and especially R.G. Turingan for helpful advice and discussion. This research was supported by grants from the U.S. National Science Foundation: ANT-9416870 and ANT-0436190 to J.T.E., and ANT-0838846 and ANT-1141877 to R.B.A. We are also grateful to Danette Pratt for assembling the figures and to John Sattler for photography. This is contribution 125 from the Institute for Research on Global Climate Change at the Florida Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Eastman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansode, M.A., Eastman, J.T. & Aronson, R.B. Feeding biomechanics of five demersal Antarctic fishes. Polar Biol 37, 1835–1848 (2014). https://doi.org/10.1007/s00300-014-1565-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1565-z

Keywords

Navigation