Skip to main content
Log in

Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg−deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 23.

  2. H. Ikezi, R. J. Tailor, and D. R. Baker, Phys. Rev. Lett. 25, 11 (1970).

    Article  ADS  Google Scholar 

  3. M. Temerin, K. Cereny, W. Lotko, and F. S. Mojer, Phys. Rev. Lett. 48, 1175 (1982).

    Article  ADS  Google Scholar 

  4. R. Bostrom, G. Gustafsson, and B. Holback, Phys. Rev. Lett. 54, 82 (1988).

    Article  ADS  Google Scholar 

  5. P. O. Dovner, A. I. Eriksson, R. Bostrom, and B. Holback, Geophys. Rev. Lett. 21, 1827 (1994).

    Article  ADS  Google Scholar 

  6. K. E. Longren, IEEE Trans. Plasma Sci. 25, 943 (1983).

    Google Scholar 

  7. Y. Nakamura, T. Ito, and K. Koga, J. Plasma Phys. 49, 331 (1993).

    Article  ADS  Google Scholar 

  8. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  9. H. Schamel, Phys. Fluids 23, 2498 (1980).

    Article  ADS  Google Scholar 

  10. K. Nishihara and M. Tajiri, J. Phys. Soc. Jpn. 50, 4047 (1981).

    Article  ADS  Google Scholar 

  11. R. A. Cairns, A. A. Mamun, and R. Bingham, Geophys. Rev. Lett. 22, 2709 (1995).

    Article  ADS  Google Scholar 

  12. T. Akhter, M. M. Hossain, and A. A. Mamun, Commun. Theor. Phys. 59, 745 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  13. C. O. Hines, J. Atmos. Terr. Phys. 11, 36 (1957).

    Article  ADS  Google Scholar 

  14. S. Sultana and A. A. Mamun, Astrophys. Space Sci. 349, 229 (2014).

    Article  ADS  Google Scholar 

  15. M. Shahmansouri and M. Tribeche, Astrophys. Space Sci. 350, 623 (2014).

    Article  ADS  Google Scholar 

  16. M. C. Begelman, R. D. Blanford, and M. J. Rees, Rev. Mod. Phys. 56, 255 (1984).

    Article  ADS  Google Scholar 

  17. H. R. Miller and P. J. Witta, Active Galactic Nuclei (Springer, Berlin, 1987).

    Google Scholar 

  18. M. Tribeche, K. Aoutou, S. Younsi, and R. Amour, Phys. Plasmas 16, 072103 (2009).

    Article  ADS  Google Scholar 

  19. O. Adriani, G. C. Barbarino, and G. A. Bazilevskaya, Nature 458, 607 (2009).

    Article  ADS  Google Scholar 

  20. C. M. Surko and T. Murphy, Phys. Fluids B 2, 1372 (1990).

    Article  ADS  Google Scholar 

  21. F. B. Rizatto, J. Plasma Phys. 40, 288 (1988).

    ADS  Google Scholar 

  22. G. Gervino, A. Lavagno, and D. Pigato, Central Eur. J. Phys. 10, 594 (2012).

    ADS  Google Scholar 

  23. A. Lavagno and D. Pigato, Eur. Phys. J. A 47, 52 (2011).

    Article  ADS  Google Scholar 

  24. J. A. S. Lima, R. Silva, and J. Santos, Phys. Rev. E 61, 3260 (2000).

    Article  ADS  Google Scholar 

  25. H. R. Pakzad, Can. J. Phys. 89, 1073 (2011).

    Article  ADS  Google Scholar 

  26. P. Eslami, M. Mottaghizadeh, and H. R. Pakzad, Phys. Scr. 84, 015504 (2011).

    Article  ADS  Google Scholar 

  27. M. Tribeche and A. Merriche, Phys. Plasmas 18, 034502 (2011).

    Article  ADS  Google Scholar 

  28. P. Eslami, M. Mottaghizadeh, and H. R. Pakzad, Phys. Plasmas 18, 102303 (2011).

    Article  ADS  Google Scholar 

  29. M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, Chin. Phys. Lett. 32, 015201 (2015).

    Article  ADS  Google Scholar 

  30. M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, IEEE Trans. Plasma Sci. 43, 643 (2015).

    Article  ADS  Google Scholar 

  31. M. Ferdousi and A. A. Mamun, Braz. J. Phys. 45, 89 (2015).

    Article  ADS  Google Scholar 

  32. M. Ferdousi, S. Sultana, and A. A. Mamun, Phys. Plasmas 22, 032117 (2015).

    Article  ADS  Google Scholar 

  33. A. M. Wazwaz, Commun. Nonlin. Sci. Numer. Simul. 12, 1395 (2007).

    Article  MathSciNet  Google Scholar 

  34. A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Springer, Higher Education, 2009).

    Book  MATH  Google Scholar 

  35. N. C. Lee, Phys. Plasmas 16, 042316 (2009).

    Article  ADS  Google Scholar 

  36. M. M. Hossain, A. A. Mamun, and K. S. Ashrafi, Phys. Plasmas 18, 103704 (2011).

    Article  ADS  Google Scholar 

  37. S. Yasmin, M. Asaduzzaman, and A. A. Mamun, Phys. Plasmas 19, 103703 (2012).

    Article  ADS  Google Scholar 

  38. U. N. Ghosh, D. K. Ghosh, P. Chatterjee, M. Bacha, and M. Tribeche, Astrophys. Space. Sci. 343, 265 (2013).

    Article  ADS  Google Scholar 

  39. M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, Astrophys. Space. Sci. 352, 579 (2014).

    Article  ADS  Google Scholar 

  40. A. E. Dubinov, IEEE Trans. Plasma Sci. 80, 035504 (2009).

    Google Scholar 

  41. A. E. Dubinov, Plasma Phys. Rep. 35, 991 (2009).

    Article  ADS  Google Scholar 

  42. F. Verheest and T. Cattaert, Phys. Plasmas 11, 3078 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  43. R. Gogoi, R. Roychoudhury, and M. Khan, Indian J. Pure Appl. Phys. 50, 110 (2012).

    Google Scholar 

  44. A. R. Plastino and A. Plastino, Phys. Lett. A 174, 384 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  45. C. Feron and J. Hjorth, Phys. Rev. E 77, 022106 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jannat.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jannat, N., Ferdousi, M. & Mamun, A.A. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma. Plasma Phys. Rep. 42, 678–686 (2016). https://doi.org/10.1134/S1063780X16070059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16070059

Navigation