Skip to main content
Log in

Concerning the strength of dynamic strain aging in zirconium

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Tensile tests on high purity (6 × 10−4 oxygen equivalent) and commercial purity (6 × 10−3 oxygen equivalent) zirconium were performed between 77 and 1000 K in order to evaluate dynamic strain aging. A comparison with earlier data from two equivalent titanium compositions yielded the following; reducing the interstitial concentration to the zone refined iodide level removes most evidence of strain aging in both zirconium and titanium. At this impurity concentration, zirconium also shows a greatly reduced thermally activated flow stress component. This was not observed in titanium. At the commercial purity level, both metals exhibit strain aging phenomena. These are much weaker, however, in Zr than in Ti. Even at this impurity level Zr does not exhibit a strain aging yield point, the Portevin-Le Chatelier effect or a well defined work hardening rate peak. All of these latter are found in commercial purity Ti. Several other aspects of DSA, while observed in Zr, are less pronounced than in Ti. The principal interstitial impurity in these materials is oxygen. Oxygen in solid solution strongly increases the(c/a) ratio of Ti, but has little effect on this ratio in Zr. This distortion of the Ti hcp lattice may account, in part, for the greater strength of DSA in this metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Reed-Hill:On the Dynamics of Dislocation Pinning During Dynamic Strain Aging, Technical Report to U. S. Army Research Office-Durham, under Grant No. DA-ARO-D-31-124-72-G70, April 25, 1973.

  2. B. Ramaswami and G. B. Craig:Trans. TMS-AIME, 1967, vol. 239, pp. 1226- 31.

    Google Scholar 

  3. V. Ramachandran and R. E. Reed-Hill:Met. Trans., 1970, vol. 1, pp. 2105–09. 4. C. R. Simcoe and D. E. Thomas: The Tensile Properties of Zirconium Alloys at Fabrication Temperatures and Strain Rates, WAPD-51, Westinghousc Atomic Power Division, Pittsburgh, Pa., 1952.

    Article  CAS  Google Scholar 

  4. D. Lee:Met. Trans., 1970, vol. 1, pp. 1607–16.

    Article  CAS  Google Scholar 

  5. S. N. Tiwari, D. J. Lloyd, and K. Tangri:Met. Trans., 1972, vol. 3, pp. 2605- 12.

    Article  Google Scholar 

  6. R. D. Warda, V. Fidlcris, and E. Teghtsoonian:Met. Trans., 1973, vol. 4. pp. 1201–06.

    Article  CAS  Google Scholar 

  7. A. M. Garde, A. T. Santhanam, and R. E. Reed-Hill:Acta Met., 1972, vol. 20, pp. 215–20.

    Article  CAS  Google Scholar 

  8. H. Conrad:Acta Met., 1966, vol. 14, pp. 1631–33.

    Article  CAS  Google Scholar 

  9. W. R. Tyson:Can. Met. Quart. 1967, vol. 6, pp. 301–32.

    CAS  Google Scholar 

  10. D. Mills and G. B.Craig:Tram. TMS-AIME, 1968, vol. 242, pp. 1881–90.

    Google Scholar 

  11. P. Soo and G. T. Higgins:Acta Met., 1968, vol. 16, pp. 177–86.

    Article  CAS  Google Scholar 

  12. R. M. Treco:Trans. ASM, 1953, vol. 45, pp. 872–92.

    Google Scholar 

  13. D. Weinstein:Electrochem. Technol., 1966, vol. 4, pp. 307–12.

    CAS  Google Scholar 

  14. J. D. Baird:Iron and Steel. 1963, vol. 36, pp. 450–57.

    Google Scholar 

  15. A. T. Santhanam, V. Ramachandran, and R. E. Reed-Hill:Met. Trans., 1970, vol. 1, pp. 2593–98.

    Google Scholar 

  16. R.P. Carreker, Jr.:Trans. AIME, 1957, vol. 209, pp. 112–15.

    Google Scholar 

  17. R. P. Carreker, Jr. and W. R. Hibbard, Jr.:Acta Met., 1953, vol. 1. pp. 654–63.

    Article  CAS  Google Scholar 

  18. A. Nadai and M. J. Manjoinc:Proc. ASTM, 1940, vol. 40, pp. 822–39.

    Google Scholar 

  19. A. Nadai and M. J. Manjoinc:J. Appl. Mech, 1941, vol. 8, pp. A77-A91.

    Google Scholar 

  20. P. C. J. Gallagher:Phil. Mag., 1967, vol. 15, pp. 51–83.

    Article  ADS  CAS  Google Scholar 

  21. W. R. Tyson and G. B. Craig:Can. Met. Quart., 1968, vol. 7, pp. 119–26.

    CAS  Google Scholar 

  22. C. Crussard and B. Jaoul:Rev. Met., 1950, vol. 47, pp. 589–600.

    CAS  Google Scholar 

  23. C. Crussard:Rev. Met., 1953, vol. 10, pp. 697–710.

    Google Scholar 

  24. B. Jaoul:J. Mech. Phys. Solids, 1957, vol. 5, pp. 95–114.

    Article  ADS  Google Scholar 

  25. A. M. Garde and K. E. Reed-Hill:A Dual Analysis of Longitudinal and Transverse Zirconium Tensile Stress-Strain Data, paper presented at the ASTM- AIME Symposium on Zirconium in Nuclear Applications, Portland, Oregon, August 21–24, 1973, and accepted for publication in ASTM-STP-551 covering the proceedings of the symposium.

  26. R. E. Reed-Hill, W. R. Cribb, and S. N. Monteiro:Met. Trans., 1973, vol. 4, pp. 2665–67.

    Article  CAS  Google Scholar 

  27. A. M. Garde: Ph.D. Dissertation, University of Florida, 1973.

  28. D. A. Woodford:Trans. ASM, 1969, vol. 62, pp. 291–93.

    CAS  Google Scholar 

  29. A. M. Garde, E. Aigeltinger, and R. E. Reed-Hill:Met. Trans., 1973, vol. 4, pp. 2461–68.

    Article  CAS  Google Scholar 

  30. A. M.Garde and R. E. Reed-Hill:Met. Trans., 1971, vol. 2, pp. 2885–88.

    Article  Google Scholar 

  31. K. S. Raghavan, A. S. Sastri, and M. J. Marcinkowski:Trans. TMS-AIME, 1969, vol. 245, pp. 1569–75.

    CAS  Google Scholar 

  32. W. N. Roberts:Trans. TMS-AIME, 1964, vol. 230, pp. 372–77.

    CAS  Google Scholar 

  33. E. A. Loria, G. M. Keith, and E. A. Rowe:Correlation of Yield Behavior in Electrorefined Vanadium with Interstitial Impurities, U. S. Dept. of Interior Bureau of Mines Report of Investigations 6716, 1965.

  34. W. B. Pearson:Handbook of Lattice Spacings and Structures of Metals, Per- gamon Press, New York, 1967.

    Google Scholar 

  35. E. S. Fisher and C. J. Renken:Phys. Rev., 1964, vol. 135, no. 2P, pp. A482-A494.

    Article  ADS  Google Scholar 

  36. H. T. Clark:J. Metals, 1949, vol. 1, pp. 588–89.

    CAS  Google Scholar 

  37. R. F. Domagala and D. M. McPherson: U. S. AEC Publication C00-181, 1953.

  38. R. F. Domagala and D. J. McPherson:J. Metals, 1954, vol. 6, pp. 238–46.

    CAS  Google Scholar 

  39. R. M. Treco:J. Metals, 1953, vol. 5, pp. 344–48.

    CAS  Google Scholar 

  40. E. S. Bumps, H. D. Kessler, and M. Hansen:Trans. ASM, 1953, vol. 45, pp. 1008–28.

    Google Scholar 

  41. W. R. Tyson: Phy. Met. Div., Dept. of Energy, Mines and Resources, Ottawa, Ontario, Canada, Private Communication, January 1974.

  42. P. E. Armstrong and H. L. Brown:Trans. TMS-AIME, 1964, vol. 230, pp. 962–66.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly a Post Doctoral Fellow at the University of Florida.

Formerly a Post Doctoral Fellow at the University of Florida.

Formerly a student at the University of Florida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garde, A.M., Aigeltinger, E., Woodruff, B.N. et al. Concerning the strength of dynamic strain aging in zirconium. Metall Trans A 6, 1183–1188 (1975). https://doi.org/10.1007/BF02658527

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658527

Keywords

Navigation