Skip to main content
Log in

A comparison of gaseous hydrogen embrittlement, slow-strain-rate hydrogen embrittlement, and stress-corrosion cracking InTi-8Ai-1Mo-1V

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Metallographic, fractographic, and acoustic-emission studies have been carried out on the near-α commercial alloy, heat treated to produce the Widmanstätten structure and in some cases aged to precipitate α2. Both aged and unaged material underwent GHE in ∼ 10 kPa gaseous hydrogen, failure occurring along the α interface. Electron-diffraction studies established the presence of a layer of fee titanium hydride at the fracture surfaces, and acoustic-emission and fractographic observations indicated that propagation was discontinuous. The aged alloy underwent SSRHE in inert environments and SCC in 3 pct aqueous NaCl and, in contrast to GHE, failure occurred across the α-plates in both cases, producing indistinguishable cleavage-like fracture surfaces. Again, titanium hydride was detected at the fracture surfaces and, from acoustic-emission studies, crack propagation appeared to be discontinuous. Based on these observations, it is suggested that the three forms of failure occur by a common mechanism, namely by the repeated formation and rupture of the hydride phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Nelson, D. P. Williams, and J. C. Stein:Metall. Trans., 1972, vol. 3, p. 469.

    CAS  Google Scholar 

  2. H. G. Nelson:Metall. Trans. A, 1976, vol. 7A, p. 621.

    CAS  Google Scholar 

  3. J. P. Blackledge:Metal Hydrides, p. 2, Academic Press, NY, 1968.

    Google Scholar 

  4. V. A. Livanov, B. A. Kolachev, and A. A. Buhanova:The Science, Technology and Application of Titanium, p. 561, Pergamon Press, 1970.

  5. J. C. Scully:Stress-Corrosion Research, NATO ASI Series E, Appl. Sci-No. 30, p. 209, Sijthoff and Noordhoff, The Netherlands, 1979.

    Google Scholar 

  6. D. A. Meyn:Metall. Trans., 1972, vol. 3, p. 2302.

    Google Scholar 

  7. G. G. Libowitz:J. Nuc. Mat., 1960, vol. 2, p. 1.

    Article  CAS  Google Scholar 

  8. W. M. Mueller: Ref. 3, p. 336.

  9. G. H. Koch, A. J. Bursle, and E. N. Pugh:Metall. Trans. A, 1978, vol. 9A, p. 129.

    CAS  Google Scholar 

  10. M. J. Blackburn and J. C. Williams:Fundamental Aspects of Stress-Corrosion Cracking, p. 620, NACE, Houston, 1969.

    Google Scholar 

  11. D. A. Meyn and G. Sandoz:Trans. TMS-AIME, 1969, vol. 245, p. 1253.

    CAS  Google Scholar 

  12. N. E. Paton and R. A. Spurling:Metall. Trans. A, 1976, vol. 7A, p. 1769.

    CAS  Google Scholar 

  13. J. Katz and W. W. Gerberich:Int. J. of Fract. Mech., 1970, vol. 6, p. 219.

    Google Scholar 

  14. G. H. Koch, A. J. Bursle, and E. N. Pugh:Second International Congress on Hydrogen in Metals, 3D4, Pergamon, 1977.

  15. J. L. Nelson and J. A. Beavers:Metall. Trans. A, 1979, vol. 10A, p. 658.

    CAS  Google Scholar 

  16. D. N. Fager and W. F. Spurr:Trans. ASM, 1968, vol. 61, p. 283.

    CAS  Google Scholar 

  17. D. G. Chakrapani and E. N. Pugh:Metall. Trans. A, 1975, vol. 6A, p. 1155.

    CAS  Google Scholar 

  18. J. A. Beavers and E. N. Pugh:Metall. Trans. A, 1980, vol. 11 A, p. 809.

    Google Scholar 

  19. K. A. Peterson, J. C. Schwanebeck, and W. W. Gerberich:Metall. Trans. A, 1978, vol. 9A, p. 1169.

    CAS  Google Scholar 

  20. G. H. Koch: Ph.D. Thesis, University of Illinois at UrbanaChampaign, 1976.

  21. D. A. Meyn: Rept. NRL Prog., Sept. 1969, p. 34.

  22. A. J. Bursle and E. N. Pugh:Mechanisms of Environment Sensitive Cracking of Materials, p. 471, The Metals Society, London, 1977.

    Google Scholar 

  23. A. J. Bursle and E. N. Pugh:Environment-Sensitive Fracture of Engineering Materials, p. 18, TMS-AIME, Warrendale, PA 1979.

    Google Scholar 

  24. J. J. DeLuccia: Naval Air Dev. Center Report No. 76207-30, June, 1976.

  25. J. D. Boyd:Trans. ASM, 1969, vol. 62, p. 977.

    CAS  Google Scholar 

  26. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  27. R. A. Orianai:Ber. Bunsenges. Phys. Chem., 1972, vol. 76, p. 848.

    Google Scholar 

  28. R. J. Wasilewski and G. L. Kehl:Metallurgia, 1958, vol. 50, p. 455.

    Google Scholar 

  29. A. Vassel:Environment-Sensitive Fracture of Engineering Materials, p. 277, TMS-AIME, Warrendale, PA, 1979.

    Google Scholar 

  30. W. H. Smyrl: Molten Salts, p. 282, The Electrochem. Soc, Inc., 1976.

Download references

Author information

Authors and Affiliations

Authors

Additional information

formerly with the Department of Metallurgy and Mining Engineering and Materials Research Laborary, University of Illinois, Urbana, Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, G.H., Bursle, A.J., Liu, R. et al. A comparison of gaseous hydrogen embrittlement, slow-strain-rate hydrogen embrittlement, and stress-corrosion cracking InTi-8Ai-1Mo-1V. Metall Trans A 12, 1833–1843 (1981). https://doi.org/10.1007/BF02643767

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643767

Keywords

Navigation