Skip to main content

Advertisement

Log in

Electrochemical studies on NH4MnPO4.H2O–rGO Hybrid Composite Synthesized via Microwave Route for High Energy Supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, as-synthesized pure ammonium manganese phosphate hydrate (AMP) is infused with rGOx variate (Xmg = 25, 50, 75, 100) and four different hybrid composites (AMPG1, AMPG2, AMPG3 and AMPG4) have been synthesized by facile microwave route. The XRD results show two prominent peaks, one at 2θ = 10.04° (010) and other at 2θ = 31.3° (200) in all AMPGs. The Debye–Scherrer’s calculations show minimum crystallite size only for AMPG2 (80.9 nm). The Raman study confirms the rGO presence in AMPG2. The XPS confirms the existence of Mn as Mn2+ in AMPG2. The SEM/HR-TEM shows a cluster of uniform rectangular flake slabs only for AMPG2. The CV reveals that pure AMP and AMPGs exhibit pseudocapacitance. The GCD shows higher specific capacitance of 705 F g−1 at a current density of 1 A g−1 for AMPG2. The AMPG2//rGO hybrid device at 3 M aqueous H2SO4 shows higher specific capacitance of 336 F g−1 at 1 A g−1 in the potential window 0–1.8 volts, and even after 5000 cycles, the device retained 80% of its specific capacitance. The reason may be due to mapping of optimal concentration of rGO (50 mg) with \({\text{PO}}_{4}^{3 - }\) and \({\text{NH}}_{4}^{ + }\) of AMP by forming strong coordination for better activation sites for ion mobility. The energy and power densities of AMPG2//rGO device are 151 Wh kg−1 and 448 W kg−1 at 1 A g−1, which are reported for the first time for high-energy supercapacitor applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Khan N, Dilshad S, Khalid R et al (2019) Review of energy storage and transportation of energy. Energy Storage 1:1–49. https://doi.org/10.1002/est2.49

    Article  Google Scholar 

  2. Cho Y, Gabbar HA (2019) Review of energy storage technologies in harsh environment. Saf Extrem Environ 1:11–25. https://doi.org/10.1007/s42797-019-00002-9

    Article  Google Scholar 

  3. Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:2696–2767. https://doi.org/10.1039/c8ee01419a

    Article  Google Scholar 

  4. Sufyan M, Rahim NA, Aman MM et al (2019) Sizing and applications of battery energy storage technologies in smart grid system: a review. J Renew Sustain Energy 11:014105. https://doi.org/10.1063/1.5063866

    Article  CAS  Google Scholar 

  5. Koohi-Fayegh S, Rosen MA (2020) A review of energy storage types, applications and recent developments. J Energy Storage 27:101047. https://doi.org/10.1016/j.est.2019.101047

    Article  Google Scholar 

  6. Kim BK, Sy S, Yu A, Zhang J (2014) Electrochemical supercapacitors for energy storage and conversion. Handb Clean Energy Syst. https://doi.org/10.1002/9781118991978.hces112

    Article  Google Scholar 

  7. Wang F, Wu X, Yuan X et al (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854. https://doi.org/10.1039/c7cs00205j

    Article  CAS  Google Scholar 

  8. Krishnan SG, Reddy MV, Harilal M et al (2015) Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim Acta 161:312–321. https://doi.org/10.1016/j.electacta.2015.02.081

    Article  CAS  Google Scholar 

  9. Harilal M, Krishnan SG, Yar A, Misnon II, Reddy MV, Yusoff MM, Ojur Dennis J, Jose R (2017) Pseudocapacitive charge storage in single-step synthesized CoOMnO–MnCo O hybrid nanowires in aqueous alkaline electrolytes pseudocapacitive charge storage in single-step synthesized CoO–MnO2–MnCo2O4 hybrid nanowires in aqueous alkaline electrolyte. ACS J Phys Chem C 121:21171. https://doi.org/10.1021/acs.jpcc.7b06630

    Article  CAS  Google Scholar 

  10. Reddy MV, Adams S, Barron AR et al (2017) Continuous nanobelts of nickel oxide–cobalt oxide hybrid with improved capacitive charge storage properties Midhun. Mater Des 122:376. https://doi.org/10.1016/j.matdes.2017.03.024

    Article  CAS  Google Scholar 

  11. Vijayan BL, Misnon II, Anil GM, Kumar KM, Reddy MV, Zaghib K, Karuppaiah C, Yang C-C, Jose R (2019) Facile fabrication of thin metal oxide films on porous carbon for high density charge storage. J Colloid Interface Sci 562:567. https://doi.org/10.1016/j.jcis.2019.11.077

    Article  CAS  Google Scholar 

  12. Vijayan BL, Khairiyyah N, Zain M et al (2020) Void space control in porous carbon for high density supercapacitive charge storage. Energy Fuels 34:5072. https://doi.org/10.1021/acs.energyfuels.0c00737

    Article  CAS  Google Scholar 

  13. Najib S, Erdem E (2019) Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv 1:2817–2827. https://doi.org/10.1039/c9na00345b

    Article  Google Scholar 

  14. Shao H, Padmanathan N, McNulty D et al (2016) Supercapattery based on binder-free Co3(PO4)2·8H2O multilayer nano/microflakes on nickel foam. ACS Appl Mater Interfaces 8:28592–28598. https://doi.org/10.1021/acsami.6b08354

    Article  CAS  Google Scholar 

  15. Barzegar F, Momodu DY, Fashedemi OO, Bello A, Dangbegnon JK, Manyala N (2015) Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Adv 5:107482–107487. https://doi.org/10.1039/C5RA21962K

    Article  CAS  Google Scholar 

  16. Qiu S, Xing W, Mu X et al (2016) A 3D nanostructure based on transition-metal phosphide decorated heteroatom-doped mesoporous nanospheres interconnected with graphene: synthesis and applications. ACS Appl Mater Interfaces 8:32528–32540. https://doi.org/10.1021/acsami.6b11101

    Article  CAS  Google Scholar 

  17. Zhao H, Lan Y, Feng J et al (2018) Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10:11775–11781. https://doi.org/10.1039/c8nr01229f

    Article  CAS  Google Scholar 

  18. Qing X, Cao Y, Wang J et al (2014) P/N/O co-doped carbonaceous material based supercapacitor with voltage up to 1.9 V in aqueous electrolyte. RSC Adv 4:55971–55979. https://doi.org/10.1039/c4ra06336h

    Article  CAS  Google Scholar 

  19. Wen Y, Rufford TE, Hulicova-Jurcakova D, Wang L (2016) Nitrogen and phosphorous co-doped graphene monolith for supercapacitors. Chemsuschem 9:513–520. https://doi.org/10.1002/cssc.201501303

    Article  CAS  Google Scholar 

  20. Zhao J, Pang H, Deng J et al (2013) Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. CrystEngComm 15:5950–5955. https://doi.org/10.1039/c3ce40712h

    Article  CAS  Google Scholar 

  21. Pang H, Yan Z, Wang W et al (2012) Template-free controlled fabrication of NH4MnPO4_H2O and Mn2P2O7 micro-nanostructures and study of their electrochemical properties. Int J Electrochem Sci 7:12340–12353

    CAS  Google Scholar 

  22. Pang H, Yan Z, Wang W et al (2012) Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale 4:5946–5953. https://doi.org/10.1039/c2nr31208e

    Article  CAS  Google Scholar 

  23. Liu J, Hu D, Huang T, Yu A (2012) Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4·H2O as precursor. J Alloys Compd 518:58–62. https://doi.org/10.1016/j.jallcom.2011.12.134

    Article  CAS  Google Scholar 

  24. Sharmila V, Parthibavarman M (2019) Facile synthesis of MnPO4·H2O nanosheets/MWCNTs composite as electrode material for high-performance supercapacitors. J Mater Sci: Mater Electron 30:19813–19825. https://doi.org/10.1007/s10854-019-02347-0

    Article  CAS  Google Scholar 

  25. Luo P, Qiu Y, Guan X, Jiang L (2014) Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment. Phys Chem Chem Phys 16:19011–19016. https://doi.org/10.1039/c4cp02652g

    Article  CAS  Google Scholar 

  26. Xu J, Wei X, Cao J et al (2015) Facile synthesis and electrochemical performances of binder-free flexible graphene/acetylene black sandwich film. Electrochim Acta 152:391–397. https://doi.org/10.1016/j.electacta.2014.11.201

    Article  CAS  Google Scholar 

  27. Park S, An J, Potts JR et al (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon N Y 49:3019–3023. https://doi.org/10.1016/j.carbon.2011.02.071

    Article  CAS  Google Scholar 

  28. Reddy BJ, Vickraman P, Justin AS (2019) Microwave synthesis of MoO3-reduced graphene oxide nanocomposite for high performance asymmetric supercapacitors. J Mater Sci: Mater Electron 30:3618–3628. https://doi.org/10.1007/s10854-018-00641-x

    Article  CAS  Google Scholar 

  29. Zhang Q, Qin Z, Luo Q et al (2017) Microstructure and nanoindentation behavior of Cu composites reinforced with graphene nanoplatelets by electroless co-deposition technique. Sci Rep 7:1338. https://doi.org/10.1038/s41598-017-01439-3

    Article  CAS  Google Scholar 

  30. Lin L, Wang H, Xu P (2016) Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals. Chem Eng J 310:389–398. https://doi.org/10.1016/j.cej.2016.04.024

    Article  CAS  Google Scholar 

  31. Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors: an overview. Int J Electrochem Sci 3:1196–1217

    CAS  Google Scholar 

  32. Xiong Z, Bin D, Zhang K et al (2016) Facile synthesis of MnPO4·H2O nanowire/graphene oxide composite material and its application as electrode material for high performance supercapacitors. Catalysts 6:198. https://doi.org/10.3390/catal6120198

    Article  CAS  Google Scholar 

  33. El Khalfaouy R, Elabed A, Addaou A et al (2019) Synthesis and characterization of LiMnPO4 cathode material via dittmarite-type NH4MnPO4·H2O as an intermediate compound. Arab J Sci Eng 44:123–129. https://doi.org/10.1007/s13369-018-3248-5

    Article  CAS  Google Scholar 

  34. Chen C, Zhang N, Liu X et al (2016) Polypyrrole-modified NH4NiPO4·H2O nanoplate arrays on Ni foam for efficient electrode in electrochemical capacitors. ACS Sustain Chem Eng 4:5578–5584. https://doi.org/10.1021/acssuschemeng.6b01347

    Article  CAS  Google Scholar 

  35. Qiulin Z, Zhongyuan L, Zhenyu L et al (2012) Rapid synthesis of dittmarite by microwave-assisted hydrothermal method. Adv Mater Sci Eng 2012:1–4. https://doi.org/10.1155/2012/968396

    Article  CAS  Google Scholar 

  36. Muhammad Hafiz S, Ritikos R, Whitcher TJ et al (2014) A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens Actuators B Chem 193:692–700. https://doi.org/10.1016/j.snb.2013.12.017

    Article  CAS  Google Scholar 

  37. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415. https://doi.org/10.1002/adma.200903689

    Article  CAS  Google Scholar 

  38. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon N Y 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  39. Sethi M, Bantawal H, Shenoy US, Bhat DK (2019) Eco-friendly synthesis of porous graphene and its utilization as high performance supercapacitor electrode material. J Alloys Compd 799:256–266. https://doi.org/10.1016/j.jallcom.2019.05.302

    Article  CAS  Google Scholar 

  40. Srikanth VVSS, Venteshwara B, Chowdari R (2015) MgO decorated few-layered graphene as anode for Li ion batteries. ACS Appl Mater Interfaces 7:2301. https://doi.org/10.1021/am5064712

    Article  CAS  Google Scholar 

  41. Johra FT, Jung WG (2015) Hydrothermally reduced graphene oxide as a supercapacitor. Appl Surf Sci 357:1911–1914. https://doi.org/10.1016/j.apsusc.2015.09.128

    Article  CAS  Google Scholar 

  42. Kar P, Sardar S, Liu B et al (2016) Facile synthesis of reduced graphene oxide–gold nanohybrid for potential use in industrial waste-water treatment. Sci Technol Adv Mater 17:375–386. https://doi.org/10.1080/14686996.2016.1201413

    Article  CAS  Google Scholar 

  43. Vittal JJ, Saravanan K, Reddy MV et al (2009) Storage performance of LiFePO4 nanoplates. J Mater Chem 19:553–668. https://doi.org/10.1039/b817242k

    Article  CAS  Google Scholar 

  44. Reddy MV, Rao GVS, Chowdari BVR (2010) Long-term cycling studies on 4 V-cathode, lithium vanadium fluorophosphate. J Power Sources 195:5768–5774. https://doi.org/10.1016/j.jpowsour.2010.03.032

    Article  CAS  Google Scholar 

  45. Reddy MV, Yiming X, Rajarajan V et al (2015) Template free facile molten synthesis and energy storage studies on MCo2O4 (M = Mg, Mn) as anode for Li-ion batteries. ACS Sustain Chem Eng 3:3035–3042. https://doi.org/10.1021/acssuschemeng.5b00439

    Article  CAS  Google Scholar 

  46. Nesbitt HW, Banerjee D (1998) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Mineral 83:305–315. https://doi.org/10.2138/am-1998-3-414

    Article  CAS  Google Scholar 

  47. Stranick M (1999) Mn2O3 by XPS. Surf Sci Spectra 6:39–46

    Article  CAS  Google Scholar 

  48. Shimizu K, Shchukarev A (2011) X-ray photoelectron spectroscopy of fast-frozen hematite colloids in aqueous solutions. 3. Stabilization of ammonium species by surface (hydr) oxo groups. J Phys Chem 115:6796–6801

    Article  CAS  Google Scholar 

  49. Terauchi T, Kobayashi Y, Iwai H, Tanaka A (2012) Protonic defect induced carrier doping in TTFCOO–NH4 + : tunable doping level by solvent. Synth Met 162:531–535. https://doi.org/10.1016/j.synthmet.2012.01.026

    Article  CAS  Google Scholar 

  50. Chinnadurai D, Selvaraj AR, Rajendiran R et al (2018) Inhibition of redox behaviors in hierarchically structured manganese cobalt phosphate supercapacitor performance by surface trivalent cations. ACS Omega 3:1718–1725. https://doi.org/10.1021/acsomega.7b01762

    Article  CAS  Google Scholar 

  51. Yang C, Dong L, Chen Z, Lu H (2014) High-performance all-solid-state supercapacitor based on the assembly of graphene and manganese(II) phosphate nanosheets. J Phys Chem C 118:18884–18891. https://doi.org/10.1021/jp504741u

    Article  CAS  Google Scholar 

  52. Chen GZ (2013) Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog Nat Sci Mater Int 23:245–255. https://doi.org/10.1016/j.pnsc.2013.04.001

    Article  CAS  Google Scholar 

  53. Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223. https://doi.org/10.1006/jssc.1998.8128

    Article  CAS  Google Scholar 

  54. Tang Y, Qiao Y, Zhao Y et al (2016) Hybridized phosphate with ultrathin nanoslices and single crystal microplatelets for high performance supercapacitors. Sci Rep 6:2–11. https://doi.org/10.1038/srep17613

    Article  CAS  Google Scholar 

  55. Hao J, Li W, Zuo X et al (2019) Facile electrochemical phosphatization of Mn3O4 nanosheet arrays for supercapacitor with enhanced performance. J Mater Sci 54:625–637. https://doi.org/10.1007/s10853-018-2842-y

    Article  CAS  Google Scholar 

  56. Reddy BJ, Vickraman P, Justin AS (2019) Asymmetric supercapacitor device performance based on microwave synthesis of N-doped graphene/nickel sulfide nanocomposite. J Mater Sci 54:6361–6373. https://doi.org/10.1007/s10853-018-03314-6

    Article  CAS  Google Scholar 

  57. Bai Y, Du M, Chang J et al (2014) Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes. J Mater Chem A 2:3834–3840. https://doi.org/10.1039/c3ta15004f

    Article  CAS  Google Scholar 

  58. Liu Y, Zhai X, Yang K et al (2019) Mesoporous NH4 NiPO4 ·H2O for high-performance flexible all-solid-state asymmetric supercapacitors. Front Chem. https://doi.org/10.3389/fchem.2019.00118

    Article  Google Scholar 

  59. Arul Raja T, Vickraman P, Simon Justin A, Joji Reddy B (2019) Microwave synthesis of zinc ammonium phosphate/reduced graphene oxide hybrid composite for high energy density supercapacitors. Phys Status Solidi Appl Mater Sci 217:1900736. https://doi.org/10.1002/pssa.201900736

    Article  CAS  Google Scholar 

  60. Yan K, Kang L, Dai Y-H et al (2016) Facile fabrication of manganese phosphate nanosheets for supercapacitor applications. Ionics (Kiel) 22:1461–1469. https://doi.org/10.1007/s11581-016-1652-y

    Article  CAS  Google Scholar 

  61. Numan A, Ramesh K, Lee CC et al (2017) An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite. J Solid State Electrochem 21:3205–3213. https://doi.org/10.1007/s10008-017-3624-1

    Article  CAS  Google Scholar 

  62. Priyadharsini N, Shanmugavani A, Vasylechko L, Kalai Selvan R (2018) Sol-gel synthesis, structural refinement, and electrochemical properties of potassium manganese phosphate for supercapacitors. Ionics (Kiel) 24:2073–2082. https://doi.org/10.1007/s11581-018-2449-y

    Article  CAS  Google Scholar 

  63. Madito MJ, Oyedotun KO, Masikhwa TM et al (2017) Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. J Colloid Interface Sci 494:325–337. https://doi.org/10.1016/j.jcis.2017.01.098

    Article  CAS  Google Scholar 

  64. Kai-Bing Li, Da-Wei Shi, Zhi-Yong Cai, Guo-Liang Z, Qiu-An Huang LDC-P (2015) Studies on the equivalent serial resistance of carbon supercapacitor. Electrochim Acta. https://doi.org/10.1016/j.electacta.2015.06.008

    Article  Google Scholar 

  65. Wang P, Wang T, Lin W et al (2018) Enhanced supercapacitor performance using electropolymerization of self-doped polyaniline on carbon film. Nanomaterials 8:214. https://doi.org/10.3390/nano8040214

    Article  CAS  Google Scholar 

  66. Guo Yanni, He Deliang, Xie Aomei, Wei Qu, Yining Tang LZ, Zhu R (2019) The electrochemical oxidation of hydroquinone and catechol through a novel poly-geminal dicationic ionic liquid (PGDIL)–TiO2 composite film electrode. Polymers (Basel) 11:1907

    Article  CAS  Google Scholar 

  67. Jain D, Kanungo J (2018) Enhanced performance of ultracapacitors using redox additive-based electrolytes. Appl Phys A 124:14. https://doi.org/10.1007/s00339-018-1814-z

    Article  CAS  Google Scholar 

  68. Ma W, Xie L, Dai L et al (2018) Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochim Acta 266:420–430. https://doi.org/10.1016/j.electacta.2018.02.031

    Article  CAS  Google Scholar 

  69. Sarkar A, Gopal G (2018) Synthesis of BiFeO3 nanoparticle anchored TiO2-BiFeO3 nanoheterostructure and exploring its different electrochemical aspects as electrode. Mater Today Proc 5:10177–10184. https://doi.org/10.1016/j.matpr.2017.11.016

    Article  CAS  Google Scholar 

  70. Liu R, Cho SI, Lee SB (2008) Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 19:215710. https://doi.org/10.1088/0957-4484/19/21/215710

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palanisamy Vickraman.

Ethics declarations

Conflict of interest

The authors hereby declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, T., Vickraman, P., Justin, A.S. et al. Electrochemical studies on NH4MnPO4.H2O–rGO Hybrid Composite Synthesized via Microwave Route for High Energy Supercapacitors. J Mater Sci 55, 14447–14463 (2020). https://doi.org/10.1007/s10853-020-05032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05032-4

Navigation