Skip to main content
Log in

Multigrid preconditioning for the overlap operator in lattice QCD

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The overlap operator is a lattice discretization of the Dirac operator of quantum chromodynamics (QCD), the fundamental physical theory of the strong interaction between the quarks. As opposed to other discretizations, it preserves the important physical property of chiral symmetry, at the expense of requiring much more effort when solving systems posed with this operator. We present a preconditioning technique based on another lattice discretization, the Wilson-Dirac operator. The mathematical analysis precisely describes the effect of this preconditioning strategy in the case that the Wilson-Dirac operator is normal. Although this is not exactly the case in realistic settings, we show that current smearing techniques indeed drive the Wilson-Dirac operator towards normality, thus providing motivation for why our preconditioner works well in practice. Results of numerical experiments in physically relevant settings show that our preconditioning yields accelerations of more than an order of magnitude compared to unpreconditioned solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Physical space-time is a four-dimensional Minkowski space. We present the theory in Euclidean space-time since this version can be treated numerically. The two versions are equivalent, cf. [33].

  2. For simplicity, we consider here the “naive” limit \(a \rightarrow 0\). In the full quantum theory one has \(\mathcal {D}_{\mathcal {L}}= D_W(m_0(a)) + \mathcal {O}(a)\) with the mass \(m_0(a)\) of order \(1/\log (a)\); see [33].

  3. The domain wall discretization satisfies (8) approximately and, hence, has also been the focus of extensive research.

  4. To represent a physically meaningful quantity, the Wilson gauge action is usually scaled. This is not relevant in the present context.

  5. In all our experiments, setup never exceeded 2 % of the total execution time, so we do not report timings for it.

References

  1. Albanese, M., Costantini, F., Fiorentini, G., Flore, F., Lombardo, M.P., Tripiccione, P.B.R., Fonti, L., Remiddi, E., Bernaschi, M., Cabibbo, N., Fernandez, L.A., Marinari, E., Parisi, G., Salina, G., Cabasino, S., Marzano, F., Paolucci, P., Petrarca, S., Rapuano, F., Marchesini, P., Giacomelli, P., Rusack, R.: Glueball masses and string tension in lattice QCD. Phys. Lett. B 192, 163–169 (1987)

    Article  Google Scholar 

  2. Arnold, D.N.: Stability, consistency and convergence of numerical discretizations. In: Enquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics. Springer (2016). preprint available under http://www.ima.umn.edu/~arnold//papers/stability.pdf

  3. Babich, R., Brannick, J., Brower, R.C., Clark, M.A., Manteuffel, T.A., McCormick, S.F., Osborn, J.C., Rebbi, C.: Adaptive multigrid algorithm for the lattice Wilson-Dirac operator. Phys. Rev. Lett. 105, 201602 (2010)

    Article  Google Scholar 

  4. Bergrath, T., Ramalho, M., Kenway, R. et al.: PRACE scientific annual report 2012, tech. rep., PRACE (2012). http://www.prace-ri.eu/IMG/pdf/PRACE_Scientific_Annual_Report_2012.pdf, p. 32

  5. Berruto, F., Narayanan, R., Neuberger, H.: Exact local fermionic zero modes. Phys. Lett. B 489, 243–250 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonati, C., D’Elia, M.: A comparison of the gradient flow with cooling in SU(3) pure gauge theory. Phys. Rev. D 89, 105005 (2014)

    Article  Google Scholar 

  7. Borsanyi, S., Delgado, Y., Durr, S., Fodor, Z., Katz, S.D., Krieg, S., Lippert, T., Nogradi, D., Szabo, K.K.: QCD thermodynamics with dynamical overlap fermions. Phys. Lett. B 713, 342–346 (2012)

    Article  Google Scholar 

  8. Brannick, J., Brower, R.C., Clark, M.A., Osborn, J.C., Rebbi, C.: Adaptive multigrid algorithm for lattice QCD. Phys. Rev. Lett. 100, 041601 (2007)

    Article  Google Scholar 

  9. Capitani, S., Durr, S., Hoelbling, C.: Rationale for UV-filtered clover fermions. JHEP 0611(2006), 028 (2006)

    Article  Google Scholar 

  10. Cundy, N., van den Eshof, J., Frommer, A., Krieg, S., Schäfer, K.: Numerical methods for the QCD overlap operator. III: Nested iterations. Comput. Phys. Commun. 165, 221–242 (2005)

    Article  Google Scholar 

  11. de Forcrand, P., Kurkela, A., Panero, M.: Numerical properties of staggered overlap fermions, PoS, LATTICE2010:080 (2010)

  12. Del Debbio, L., Giusti, L., Lüscher, M., Petronzio, R., Tantalo, N.: QCD with light Wilson quarks on fine lattices (i): First experiences and physics results. JHEP 02(2007), 056 (2007)

    Article  Google Scholar 

  13. Del Debbio, L., Giusti, L., Lüscher, M., Petronzio, R., Tantalo, N.: QCD with light Wilson quarks on fine lattices (ii): DD-HMC simulations and data analysis. JHEP 0702(2007), 082 (2007)

    Article  Google Scholar 

  14. Dürr, S., Fodor, Z., Frison, J., Hoelbling, C., Hoffmann, R., Katz, S.D., Krieg, S., Kurth, T., Lellouch, L., Lippert, T., Szabo, K., Vulvert, G.: Ab initio determination of light hadron masses. Science 322, 1224–1227 (2008)

    Article  Google Scholar 

  15. Edwards, R.G., Heller, U.M., Narayanan, R.: A study of practical implementations of the overlap Dirac operator in four-dimensions. Nucl. Phys. B 540, 457–471 (1999)

    Article  Google Scholar 

  16. Frommer, A., Güttel, S., Schweitzer, M.: Convergence of restarted Krylov subspace methods for Stieltjes functions of matrices. SIAM J. Matrix Anal. Appl. 35, 1602–1624 (2014)

    Article  MATH  Google Scholar 

  17. Frommer, A., Güttel, S., Schweitzer, M.: Efficient and stable Arnoldi restarts for matrix functions based on quadrature. SIAM J. Matrix Anal. Appl. 35, 661–683 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frommer, A., Kahl, K., Krieg, S., Leder, B., Rottmann, M.: Adaptive aggregation based domain decomposition multigrid for the lattice Wilson Dirac operator. SIAM J. Sci. Comp. 36, A1581–A1608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ginsparg, P.H., Wilson, K.G.: A remnant of chiral symmetry on the lattice. Phys. Rev. D 25, 2649–2657 (1982)

    Article  Google Scholar 

  20. Giusti, L., Hoelbling, C., Lüscher, M., Wittig, H.: Numerical techniques for lattice QCD in the epsilon regime. Comput. Phys. Commun. 153, 31–51 (2003)

    Article  MATH  Google Scholar 

  21. Golub, G.H., Loan, C.F.V.: Matrix Computations, 2nd edition. The Johns Hopkins University Press, Baltimore, MD, USA (1989)

  22. Guest, M., Aloisio, G., Kenway, R. et al.: The scientific case for HPC in Europe 2012–2020, tech. rep., PRACE, Oct (2012). http://www.prace-ri.eu/PRACE-The-Scientific-Case-for-HPC, p. 75

  23. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer Series in Computational Mathematics, vol. 31. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  24. Hasenfratz, A., Hoffmann, R., Schaefer, S.: Hypercubic smeared links for dynamical fermions. JHEP 0705(2007), 029 (2007)

    Article  Google Scholar 

  25. Hasenfratz, A., Hoffmann, R., Schaefer, S.: Localized eigenmodes of the overlap operator and their impact on the eigenvalue distribution. JHEP 0711(2007), 071 (2007)

    Article  Google Scholar 

  26. Intel, Intel xeon x5570 (nehalem-ep) quad-core processors. http://ark.intel.com/products/37111/Intel-Xeon-Processor-X5570-8M-Cache-2_93-GHz-6_40-GTs-Intel-QPI

  27. Jülich Supercomputing Centre, Juropa - Jülich research on petaflop architectures. http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html

  28. Kaplan, D.B.: A method for simulating chiral fermions on the lattice. Phys. Lett. B 288, 342–347 (1992)

    Article  MathSciNet  Google Scholar 

  29. Lüscher, M.: Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation. Phys. Lett. B 428, 342–345 (1998)

    Article  Google Scholar 

  30. Lüscher, M.: Local coherence and deflation of the low quark modes in lattice QCD. JHEP 07(2007), 081 (2007)

    Article  Google Scholar 

  31. Lüscher, M.: Properties and uses of the Wilson flow in lattice QCD. JHEP 1008(2010), 071 (2010)

    Article  Google Scholar 

  32. Lüscher, M.: Trivializing maps, the Wilson flow and the HMC algorithm. Commun. Math. Phys. 293, 899–919 (2010)

    Article  MATH  Google Scholar 

  33. Montvay, I., Münster, G.: Quantum Fields on a Lattice. Cambridge University Press, Cambridge Monographs on Mathematical Physics (1994)

  34. Morningstar, C., Peardon, M.J.: Analytic smearing of SU(3) link variables in lattice QCD. Phys. Rev. D 69, 054501 (2004)

    Article  Google Scholar 

  35. Negele, J.W.: Instantons, the QCD vacuum, and hadronic physics. Nucl. Phys. Proc. Suppl. 73, 92–104 (1999)

    Article  MATH  Google Scholar 

  36. Nepomnyaschikh, S.: Mesh theorems on traces, normalizations of function traces and their inversion. Soviet J. Numer. Anal. Math. Model. 6, 223–242 (1991)

    MathSciNet  MATH  Google Scholar 

  37. Neuberger, H.: Exactly massless quarks on the lattice. Phys. Lett. B 417, 141–144 (1998)

    Article  MathSciNet  Google Scholar 

  38. Neuberger, H.: Bounds on the Wilson Dirac operator. Phys. Rev. D 61, 085015 (2000)

    Article  MathSciNet  Google Scholar 

  39. Niedermayer, F.: Exact chiral symmetry, topological charge and related topics. Nucl. Phys. Proc. Suppl. 73, 105–119 (1999)

    Article  MATH  Google Scholar 

  40. Osborn, J.C., Babich, R., Brannick, J., Brower, R.C., Clark, M.A., Cohen, S.D., Rebbi, C.: Multigrid solver for clover fermions, PoS, LATTICE2010:037 (2010)

  41. Oswald, P.: Preconditioners for nonconforming discretizations. Math. Comp. 65, 923–941 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia, PA, USA (2003)

    Book  MATH  Google Scholar 

  43. Simoncini, V., Szyld, D.B.: Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM J. Sci. Comput. 25, 454–477 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Smith, G.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford Applied Mathematics and Computing Science Series (1985)

  45. Sorensen, D., Lehoucq, R., Yang, C., Maschhoff, K.: PARPACK. http://www.caam.rice.edu/software/ARPACK, used version: 2.1, Sept (1996)

  46. Toth, B.: QCD thermodynamics with dynamical overlap fermions, PoS, LATTICE2013:163 (2013)

  47. van den Eshof, J., Frommer, A., Lippert, T., Schilling, K., van der Vorst, H.A.: Numerical methods for the QCD overlap operator. I: Sign-function and error bounds. Comput. Phys. Commun. 146, 203–224 (2002)

    Article  MATH  Google Scholar 

  48. van den Eshof, J., Sleijpen, G.L.: Inexact Krylov subspace methods for linear systems. SIAM J. Matrix Anal. Appl. 26, 125–153 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu, J.: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56, 215–235 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the Budapest-Marseille-Wuppertal collaboration and Jakob Finkenrath for providing configurations. All numerical results were obtained on Juropa at Jülich Supercomputing Centre (JSC) through NIC grant HWU12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Frommer.

Additional information

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG) Transregional Collaborative Research Centre 55 (SFB/TRR55) and by the National Science Foundation under grant DMS:1320608.

Apppendix: The entries of \(D_W^HD_W-D_WD_W^H\)

Apppendix: The entries of \(D_W^HD_W-D_WD_W^H\)

To prove Proposition 2, we inspect the entries of \(D_W^HD_W-D_WD_W^H\). We use the notation \(\pi _\mu ^{\pm }\) for the matrices

$$\begin{aligned} \pi _\mu ^{\pm } = \tfrac{1}{2}(I_4 \pm \gamma _\mu ), \; \mu =0,\ldots ,3. \end{aligned}$$

The relations (3) between the \(\gamma \)-matrices show that each \(\pi _\mu ^\pm \) is a projection and that, in addition,

$$\begin{aligned} \pi _\mu ^{+}\pi _\mu ^{-}= \pi _\mu ^{-}\pi _\mu ^{+} = 0, \; \mu =0,\ldots ,3. \end{aligned}$$
(28)

Considering all 12 variables at each lattice site as an entity, the graph associated with the nearest neighbor coupling represented by the matrix \(D_W\) is the 4d-torus, and similarly for \(D_W^H\). Table 4 repeats (6), giving the nonzero entries of a (block) row in \(D_W\) and \(D_W^H\) in terms of the \(12 \times 12\) matrices that couple lattice site x with sites x and \(x\pm \hat{\mu }\). We use m to denote \(m_0+4\), with \(m_0\) from (5).

Table 4 Coupling terms in \(D_W\) and \(D_W^H\)

The product \(D_W^HD_W\) represents a coupling between nearest and next-to-nearest lattice sites; the coupling \(12 \times 12\) matrices are obtained as the sum over all paths of length two on the torus of the product of the respective coupling matrices in \(D_W^H\) and \(D_W\). A similar observation holds for \(D_WD_W^H\). Table 5 reports all the entries of \(D_W^HD_W\), and we now shortly discuss all the paths of length 2 that contribute to these entries of \(D_W^HD_W\).

For the diagonal position (xx), we have 9 paths of length 2, \((x,x) \rightarrow (x,x) \rightarrow (x,x)\) and \((x,x) \rightarrow (x,x\pm \hat{\mu }) \rightarrow (x,x), \mu = 0,\ldots ,3\). For a nearest neighbor \((x,x + \hat{\mu })\), we have the two paths \((x,x) \rightarrow (x,x) \rightarrow (x,x + \hat{\mu })\) and \((x,x) \rightarrow (x,x+\hat{\mu }) \rightarrow (x,x+\hat{\mu })\) and similarly in the negative directions. For a position \((x,x \pm 2\hat{\mu })\), there is only one path, \((x,x) \rightarrow (x,x \pm \hat{\mu }) \rightarrow (x,x \pm 2\hat{\mu })\), with the product of the couplings being 0 due to (28). Finally, for the other next-to-nearest neighbors, we always have two paths; for example, \((x,x) \rightarrow (x,x+\hat{\mu }) \rightarrow (x + \hat{\mu } - \hat{\nu })\) and \((x,x) \rightarrow (x,x-\hat{\nu }) \rightarrow (x + \hat{\mu } - \hat{\nu })\).

The coupling terms in \(D_WD_W^H\) are identical to those for \(D_W^HD_W\) except that we have to interchange all \(\pi _\mu ^+\) and \(\pi _\mu ^-\) as well as all \(\pi _\nu ^+\) and \(\pi _\nu ^-\).

Table 5 Coupling terms in \(D_W^HD_W\)

This shows that, in \(D_W^HD_W-D_WD_W^H\), the only non-vanishing coupling terms are those at positions \((x,x+\hat{\mu } + \hat{\nu })\), \((x,x+\hat{\mu } - \hat{\nu })\) and \((x,x-\hat{\mu } - \hat{\nu })\) for \(\mu \ne \nu \). They are given in Table 6, where we used the identities

$$\begin{aligned} \begin{array}{lll} \pi _{\mu }^{-}\pi _{\nu }^{-} - \pi _{\mu }^{+}\pi _{\nu }^{+} &{}=&{} \frac{1}{2}\left( - \gamma _{\mu } - \gamma _{\nu }\right) ,\\ \pi _{\mu }^{+}\pi _{\nu }^{-} - \pi _{\mu }^{-}\pi _{\nu }^{+} &{}=&{} \frac{1}{2}\left( \gamma _{\mu } - \gamma _{\nu }\right) ,\\ \pi _{\mu }^{-}\pi _{\nu }^{+} - \pi _{\mu }^{+}\pi _{\nu }^{-} &{}=&{} \frac{1}{2}\left( -\gamma _{\mu } + \gamma _{\nu }\right) ,\\ \pi _{\mu }^{+}\pi _{\nu }^{+} - \pi _{\mu }^{-}\pi _{\nu }^{-} &{}=&{} \frac{1}{2}\left( \gamma _{\mu } + \gamma _{\nu }\right) .\\ \end{array} \end{aligned}$$

By rearranging the terms, we obtain the plaquettes from (20) and (21). We exemplify this for position \((x,x+\hat{\mu } + \hat{\nu })\):

$$\begin{aligned}&\pi _\mu ^-\pi _\nu ^+ \otimes U_\mu (x)U_\nu (x+\hat{\mu }) + \pi _\nu ^-\pi _\mu ^+ \otimes U_\nu (x)U_\mu (x+\hat{\nu }) \\&\qquad - \left( \pi _\mu ^+\pi _\nu ^- \otimes U_\mu (x)U_\nu (x+\hat{\mu }) + \pi _\nu ^+\pi _\mu ^- \otimes U_\nu (x)U_\mu (x+\hat{\nu }) \right) \\&\quad = \tfrac{1}{2}( - \gamma _\mu + \gamma _\nu ) \otimes U_\mu (x)U_\nu (x+\hat{\mu }) + \tfrac{1}{2}(\gamma _\mu - \gamma _\nu ) \otimes U_\nu (x)U_\mu (x+\hat{\nu }) \\&\quad = \tfrac{1}{2}(-\gamma _\mu + \gamma _\nu ) \otimes \left( I_3 - Q_x^{\mu ,\nu } \right) U_\mu (x)U_\nu (x+\hat{\mu }) . \end{aligned}$$
Table 6 Coupling terms in \(D_W^HD_W-D_WD_W^H\)

Using the fact that, for the Frobenius norm, we have

$$\begin{aligned} \Vert AQ \Vert _F= & {} \Vert A\Vert _F \hbox { whenever}\ Q \ \hbox {is unitary (and}\ AQ \ \hbox {is defined)}, \\ \Vert A \otimes B \Vert _F= & {} \Vert A \Vert _F \cdot \Vert B \Vert _F \hbox { for all}\ A,B, \end{aligned}$$

we obtain the following for the squares of the Frobenius norms of all the coupling matrices from Table 6:

$$\begin{aligned} \begin{array}{ll} 2 \Vert I - Q_x^{\mu ,\nu }\Vert _F^2 &{} \text{ for } \text{ position } (x,x+\hat{\mu }+ \hat{\nu }), \\ 2 \Vert I-Q_x^{\mu ,-\nu } \Vert _F^2 &{} \text{ for } \text{ position } (x,x+\hat{\mu }-\hat{\nu }),\\ 2 \Vert I - Q_x^{-\mu ,-\nu } \Vert _F^2 &{} \text{ for } \text{ position } (x,x-\hat{\mu }-\hat{\nu }). \end{array} \end{aligned}$$

Finally, for any unitary matrix Q, we have

$$\begin{aligned} \Vert I -Q \Vert _F^2 = \mathrm {tr}\left( (I-Q^H)(I-Q)\right) = 2 \cdot \mathrm {Re}(\mathrm {tr}\left( I-Q\right) ). \end{aligned}$$

We now obtain \(\Vert D_W^HD_W-D_WD_W^H\Vert _F^2\) by summing the squares of the Frobenius norms of all coupling matrices. This is a sum over 24n coupling matrices, n being the number of lattice sites. As discussed before, groups of four of these coupling matrices refer to the same plaquette \(Q_x^{\mu ,\nu }\) up to conjugation in SU(3), so \(\mathrm {tr}\left( I-Q\right) \) is the same for these four plaquettes Q. We can thus “normalize” to only consider all possible “first quadrant” plaquettes \(Q_x^{\mu ,\nu }\) and obtain

$$\begin{aligned} \Vert D_W^HD_W - D_WD_W^H \Vert _F^2 = 4 \sum _x \sum _{\mu < \nu } 2 \cdot 2 \cdot \mathrm {Re}(\mathrm {tr}\left( I-Q_x^{\mu ,\nu }\right) ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brannick, J., Frommer, A., Kahl, K. et al. Multigrid preconditioning for the overlap operator in lattice QCD. Numer. Math. 132, 463–490 (2016). https://doi.org/10.1007/s00211-015-0725-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0725-6

Mathematics Subject Classification

Navigation