Skip to main content
Log in

Identification of differential gene expression for Kr1 gene in bread wheat using annealing control primer system

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Intergeneric hybridization is an important strategy to introgress alien genes into common wheat for its improvement. But presence of cross ability barrier mechanism regulated by Kr1 gene played a major destructive role for hybridization than other reported genes. In order to know the underlying molecular mechanism and to dissect out this barrier, a new annealing system, ACP (anneling control primer) system was used in chromosome 5B (containing Kr1 gene) specific Recombinant Inbred Line (RIL) population. Two differentially expressed fragments for Kr1 gene was identified, cloned and sequenced. Further the expression was confirmed by northern blotting analysis. Sequence analysis of the resulted clones revealed classes of putative genes, including stress responsive and signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RIL:

Recombinant inbred lines

ACP:

Annealing control primer

PCR:

Polymerase chain reaction

DEF:

Differentially expressed fragment

PTI:

Pto interacting protein

CDPK:

Calcium dependent protein kinase

References

  1. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B 274:227–274. doi:10.1098/rstb.1976.0044

    Article  CAS  Google Scholar 

  2. Backhouse WO (1916) Note on the inheritance of crossability. J Genet 6:91–94

    Article  Google Scholar 

  3. Lein A (1943) Die genetische Grundlage der kreuzbarkeit zwishen Weizen und Roggen. Z Indukt Abstamm Vererbungsl 81:28–61. doi:10.1007/BF01847441

    Article  Google Scholar 

  4. Koba T (1997) Crossability of genes for common wheat responsible for intergeneric hybridization. Gamma field symposia. No. 36. July 23–24, Institute of Radiation Breeding, NIAR, MAFF, Japan

  5. Riley R, Chapman V (1967) The inheritance in wheat of crossability with rye. Genet Res 9:259–267

    Article  Google Scholar 

  6. Lange W, Riley R (1973) The position on chromosome 5B of wheat of the locus determining crossability with rye. Genet Res 22:143–153

    Article  Google Scholar 

  7. Sitch LA, Snape JW, Firman SJ (1985) Intra-chromosomal mapping of crossability genes in wheat (Triticum aestivum). Theor Appl Genet 70:309–314. doi:10.1007/BF00304917

    Article  Google Scholar 

  8. Krolow KD (1970) Untersuchungen uber die Kreuzberkeit zwischen Weizen and Roggen. Z Pflanzenzuchtg 64:44–72

    Google Scholar 

  9. Zheng YL, Luo MC, Yen C, Yang JL (1992) Chromosome location of a new crossability gene in common wheat. Wheat Inf Serv 75:36–40

    Google Scholar 

  10. Falk DE, Kasha K (1981) Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum on to wheat (T. aestivum). Can J Genet Cytol 23:81–88

    Google Scholar 

  11. Fedak G, Jui PY (1982) Chromosomes of Chinese spring wheat carrying genes for crossability with Betzes barley. Can J Genet Cytol 24:227–233

    Google Scholar 

  12. Liang P, Pardee A (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–970. doi:10.1126/science.1354393

    Article  CAS  PubMed  Google Scholar 

  13. McPherson MJ, Moller SG (2000) Optimization of PCR. In PCR. BIOS Scientific Publishers, Oxfordshire, UK, pp 67–87

    Google Scholar 

  14. Saiki RK, Walsh PS, Levenson CH, Erlich HA (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 86:6230–6234. doi:10.1073/pnas.86.16.6230

    Article  CAS  PubMed  Google Scholar 

  15. Brownie J, Shawcross S, Theaker J, Whitcombe D, Ferrie R, Newton C, Little S (1997) The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res 25:3235–3324. doi:10.1093/nar/25.16.3235

    Article  CAS  PubMed  Google Scholar 

  16. Ailenberg M, Silverman M (2000) Controlled hot start and improved specificity in carrying out PCR utilizing touch-up and loop incorporated primers (TULIPS). Biotech 29:1018–1024

    CAS  Google Scholar 

  17. Hwang IT, Kim YJ, Kim SH, Kwak CI, Gu YY, Chun JY (2003) Annealing control primer system for improving specificity of PCR amplification. Biotech 35:1180–1184

    CAS  Google Scholar 

  18. Manickavelu A, Kambara K, Mishina K, Koba T (2007) An efficient method for purifying high quality RNA from wheat pistils. Colloids Surf B Biointerfaces 54:254–258. doi:10.1016/j.colsurfb.2006.10.024

    Article  CAS  PubMed  Google Scholar 

  19. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  Google Scholar 

  20. Liang P, Weimin Z, Zhang X, Guo Z, O’Connel RP, Averboukh L, Wang F, Pardee A (1994) Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res 22:5763–5764. doi:10.1093/nar/22.25.5763

    Article  CAS  PubMed  Google Scholar 

  21. Herrmann MM, Pinto S, Kluth J, Wienand U, Lorbiecke R (2006) The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC Plant Biol 6:22. doi:10.1186/1471-2229-6-22

    Article  PubMed  CAS  Google Scholar 

  22. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Marmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466. doi:10.1046/j.1365-313X.2002.01432.x

    Article  CAS  PubMed  Google Scholar 

  23. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833. doi:10.1038/35081161

    Article  CAS  PubMed  Google Scholar 

  24. Martı’nez-Noel G, Nagaraj VJ, Calo G, Wiemken A, Pontis HG (2007) Sucrose regulated expression of a Ca2+-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat. Plant Physiol Biochem 45:410–441. doi:10.1016/j.plaphy.2007.03.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagu Manickavelu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manickavelu, A., Koba, T., Mishina, K. et al. Identification of differential gene expression for Kr1 gene in bread wheat using annealing control primer system. Mol Biol Rep 36, 2111–2118 (2009). https://doi.org/10.1007/s11033-008-9423-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9423-0

Keywords

Navigation