Skip to main content

Advertisement

Log in

The protective role of DL-α-lipoic acid in the oxidative vulnerability triggered by Aβ-amyloid vaccination in mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recent reports indicate that β-amyloid peptide (Aβ) vaccine based therapy for Alzheimer’s disease (AD) may be on the horizon. There are however, concerns about the safety of this approach. Immunization with Aβ has several disadvantages, because it crosses the blood brain barrier and cause inflammation and neurotoxicity. The present work is aimed to study the protective effective of α-lipoic acid (LA) in the oxidative vulnerability of β-amyloid in plasma, liver, spleen and brain, when Aβ fibrils are given intraperitoneally in inflammation induced mice. Result shows that reactive oxygen species (ROS) in the astrocytes of inflammation induced mice along with Aβ (IA) has shown 2.5-fold increase when compared with LA treated mice. The increased level of lipid peroxidase (LPO) (p < 0.05) and decreased antioxidant status (p < 0.05) were observed in the plasma, liver, spleen and brain of IA induced mice when compared with LA treated mice.

Data shows that there were no significant changes observed between the control and LA treated mice. Our biochemical and histological results highlight that significant oxidative vulnerability was observed in IA treated mice, which was prevented by LA therapy. Our findings suggest that the antioxidant effect of LA when induced with Aβ may serve as a potent therapeutic tool for inflammatory AD models. (Mol Cell Biochem 270: 29–37, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297: 353–356, 2002 (review, erratum in: Science 297: 2209, 2002)

    Article  CAS  PubMed  Google Scholar 

  2. Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D: Comparison of neurodegenerative pathology in transgenic mice over expressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J Neurosci 16: 5795–5811, 1996

    Google Scholar 

  3. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P: Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177, 1999

    Article  CAS  PubMed  Google Scholar 

  4. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D: A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408: 979–82, 2000

    Google Scholar 

  5. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW: A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408: 982–985, 2000 (erratum in: Nature 412: 660, 2001)

    Google Scholar 

  6. Lemere CA, Maron R, Spooner ET, Grenfell TJ, Mori C, Desai R, Hancock WW, Weiner HL, Selkoe DJ: Nasal A beta treatment induces anti-A beta antibody production and decreases cerebral amyloid burden in PD-APP mice. Ann N Y Acad Sci 920: 328–331, 2000

    Google Scholar 

  7. Check E: Nerve inflammation halts trial for Alzheimer’s drug. Nature 415: 462, 2002

    Article  CAS  Google Scholar 

  8. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA: A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proc Natl Acad Sci U S A 91: 3270–3274, 1994

    Google Scholar 

  9. Kelly JF, Furukawa K, Barger SW, Rengen MR, Mark RJ, Blanc EM, Roth GS, Mattson MP: Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc Natl Acad Sci U S A Jun 93: 6753–6758, 1996

    Google Scholar 

  10. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM: RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382: 685–691, 1996

    Google Scholar 

  11. Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ: Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19: 8876–8884, 1999

    Google Scholar 

  12. Behl C, Davis JB, Lesley R, Schubert D: Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817–827, 1994

    Google Scholar 

  13. Bustamante J, Lodge JK, Marcocci L, Tritschler HJ, Packer L, Rihn BH. Alpha-lipoic acid in liver metabolism and disease. Free Radic Biol Med 24: 1023–1039, 1998

    Google Scholar 

  14. Seaton TA, Jenner P, Marsden CD: The isomers of thioctic acid alter C-deoxyglucose incorporation in rat basal ganglia. Biochem Pharmacol 51: 983–986, 1996

    Article  CAS  PubMed  Google Scholar 

  15. Packer L, Roy S, Sen CK: Alpha-lipoic acid: A metabolic antioxidant and potential redox modulator of transcription. Adv Pharmacol 38: 79–101, 1997

    CAS  PubMed  Google Scholar 

  16. Packer L, Witt EH, Tritschler HJ: Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 19: 227–250, 1995

    Article  CAS  PubMed  Google Scholar 

  17. Panigrahi M, Sadguna Y, Shivakumar BR, Kolluri SV, Roy S, Packer L, Ravindranath V: Alpha-lipoic acid protects against reperfusion injury following cerebral ischemia in rats. Brain Res 717: 184–188, 1996

    Article  CAS  PubMed  Google Scholar 

  18. Pike CJ, Overman MJ, Cotman CW: Amino-terminal deletions enhance aggregation of beta-amyloid peptides in vitro. J Biol Chem 270: 23895–23898, 1995

    Google Scholar 

  19. Yankner BA: Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16: 921–932, 1996

    Google Scholar 

  20. Lindhorst E, Young D, Bagshaw W, Hyland M, Kisilevsky R: Acute inflammation, acute phase serum amyloid A and cholesterol metabolism in the mouse. Biochim Biophys Acta 1339: 143–154, 1997

    Google Scholar 

  21. Spooner ET, Desai RV, Mori C, Leverone JF, Lemere CA. The generation and characterization of potentially therapeutic A beta antibodies in mice: Differences according to strain and immunization protocol. Vaccine 21: 290–297, 2002

    Article  CAS  PubMed  Google Scholar 

  22. Dodge JT, Mitchell G, Hanahan DJ: The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100: 119–130, 1963

    CAS  PubMed  Google Scholar 

  23. Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C: Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267: 546–554, 1992

    Google Scholar 

  24. Nielsen EH, Nybo M, Svehag SE: Electron microscopy of prefibrillar structures and amyloid fibrils. Methods Enzymol 309: 491–496, 1999

    Google Scholar 

  25. Abe K, Saito H: Menadione toxicity in cultured rat cortical astrocytes. Jpn J Pharmacol 72: 299–306, 1996

    Google Scholar 

  26. Pereira C, Santos MS, Oliveira C: Involvement of oxidative stress on the impairment of energy metabolism induced by A beta peptides on PC12 cells: Protection by antioxidants. Neurobiol Dis 6: 209–219, 1999

    Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951

    CAS  PubMed  Google Scholar 

  28. Ohkawa H, Ohishi N, Yagi K: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351–358, 1979

    CAS  PubMed  Google Scholar 

  29. Misra HP, Fridovich I: The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247: 3170–3175, 1972

    Google Scholar 

  30. Beers RF, Jr Sizer IW: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195: 133–140, 1952

    Google Scholar 

  31. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG: Selenium: Biochemical role as a component of glutathione peroxidase. Science 179: 588–590, 1973

    CAS  PubMed  Google Scholar 

  32. Moron MS, Depierre JW, Mannervik B: Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat, lung and liver. Biochem Biophys Acta 582: 67–74, 1979

    Google Scholar 

  33. Bonting SL. In E.E. Bittar (ed). Membranes and Ion Transport, Vol 1. Wiley Interscience, London, 1970, pp 257–263

    Google Scholar 

  34. Hjerten S, Pan H: Purification and characterization of two forms of a low-affinity Ca2+-ATPase from erythrocyte membranes. Biochim Biophys Acta 728: 281–288, 1983

    Google Scholar 

  35. Ohnishi T, Suzuki T, Suzuki Y, Ozawa K: A comparative study of plasma membrane Mg2+-ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta 684: 67–74, 1982

    Google Scholar 

  36. Fiske CH, SubbaRow Y: The colorimetric determination of phosphorus. J Biol Chem 66: 375–400, 1925

    CAS  Google Scholar 

  37. Wallace MN, Geddes JG, Farquhar DA, Masson MR: Nitric oxide synthase in reactive astrocytes adjacent to beta-amyloid plaques. Exp Neurol 144: 266–272, 1997

    Google Scholar 

  38. Gibson GE, Zhang H: Abnormalities in oxidative processes in non-neuronal tissues from patients with Alzheimer’s disease. J Alzheimers Dis 3: 329–338, 2001

    Google Scholar 

  39. Arlt S, Beisiegel U, Kontush A: Lipid peroxidation in neurodegeneration: New insights into Alzheimer’s disease. Curr Opin Lipidol 13: 289–294, 2002

    Google Scholar 

  40. Bing Z, Reddy SA, Ren Y, Qin J, Liao WS: Purification and characterization of the serum amyloid A3 enhancer factor. J Biol Chem 274: 24649–24656, 1999

    Google Scholar 

  41. Wisniewski T, Ghiso J, Frangione B: Biology of A beta amyloid in Alzheimer’s disease. Neurobiol Dis 4: 313–328, 1997 (review, erratum in: Neurobiol Dis 5: 65, 1998)

    Google Scholar 

  42. Poduslo JF, Curran GL, Sanyal B, Selkoe DJ: Receptor-mediated transport of human amyloid beta-protein 1–40 and 1–42 at the blood-brain barrier. Neurobiol Dis 6: 190–199, 1999

    Article  Google Scholar 

  43. Zlokovic BV, Ghiso J, Mackic JB, McComb JG, Weiss MH, Frangione B: Blood-brain barrier transport of circulating Alzheimer’s amyloid beta. Biochem Biophys Res Commun 197: 1034–1040, 1993

    Google Scholar 

  44. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI: Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274: 37111–37116, 1999

    Google Scholar 

  45. Suzuki YJ, Tsuchiya M, Packer L: Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Radic Res Commun 15: 255–263, 1991 (erratum in: Free Radic Res Commun 17: 155, 1992)

    Google Scholar 

  46. Scholich H, Murphy ME, Sies H: Antioxidant activity of dihydrolipoate against microsomal lipid peroxidation and its dependence on alpha-tocopherol. Biochim Biophys Acta 1001: 256–61, 1989

    Google Scholar 

  47. Biewenga GP, Haenen GR, Bast A: The pharmacology of the antioxidant lipoic acid. Gen Pharmacol 29: 315–331, 1997

    Article  CAS  PubMed  Google Scholar 

  48. Mattson MP, Begley JG, Mark RJ, Furukawa K: A beta 25–35 induces rapid lysis of red blood cells: Contrast with A beta 1–42 and examination of underlying mechanisms. Brain Res 771: 147–153, 1997

    Google Scholar 

  49. Rumley AG, Paterson JR: Analytical aspects of antioxidants and free radical activity in clinical biochemistry. Ann Clin Biochem 35: 181–200, 1998

    Google Scholar 

  50. Ou P, Tritschler HJ, Wolff SP: Thioctic acid: A therapeutic metal-chelating antioxidant? Biochem Pharmacol 50: 123–126, 1995

    Google Scholar 

  51. Traber MG, Packer L: Vitamin E: Beyond antioxidant function. Am J Clin Nutr 62: 1501S–1509S, 1995

    Google Scholar 

  52. Aksenov MY, Tucker HM, Nair P, Aksenova MV, Butterfield DA, Estus S, Markesbery WR: The expression of key oxidative stress-handling genes in different brain regions in Alzheimer’s disease. J Mol Neurosci 11: 151–164, 1998

    Google Scholar 

  53. Halliwell B, Gutteridge JMC: Free Radicals in Biology and Medicine. Oxford University Press, Oxford, United Kingdom, 1989

    Google Scholar 

  54. Kontush A, Donarski N, Beisiegel U: Resistance of human cerebrospinal fluid to in vitro oxidation is directly related to its amyloid-beta content. Free Radic Res 35: 507–517, 2001

    Google Scholar 

  55. Chance B, Sies H, Boveris A: Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527–605, 1979

    CAS  PubMed  Google Scholar 

  56. Cho KJ, Moini H, Shon HK, Chung AS, Packer L: Alpha-lipoic acid decreases thiol reactivity of the insulin receptor and protein tyrosine phosphatase 1B in 3T3-L1 adipocytes. Biochem Pharmacol 66: 849–858, 2003

    Google Scholar 

  57. Busse E, Zimmer G, Schopohl B, Komhuber B: Influence of α-lipoic acid on intracellular glutathione invitro and invivo. Drug Res 42: 829–831, 1992

    Google Scholar 

  58. Han D, Tritschler H, Packer L: α-Lipoic acid increases intracellular glutathione in a human T-lymphocyte jurkat cell line. Biochem Biophys Res Commun 207: 258–264, 1995

    Google Scholar 

  59. Packer L: α-Lipoic acid: A metabolic antioxidant which regulates NF-kB signal transduction and protects against oxidative injury. Drug Metab Rev 30: 245–275, 1998

    Google Scholar 

  60. Schuurmans Stekhoven F, Bonting SL: Transport adenosine triphosphatases: Properties and functions. Physiol Rev 61: 1–76, 1981

    Google Scholar 

  61. Goto Y, Miura M, Iijima T: Extrusion mechanisms of intracellular Ca++ in human aortic endothelial cells. Eur J Pharmacol 314: 185–192, 1996

    Google Scholar 

  62. Jain SK: Hyperglycemia can cause membrane lipid peroxidation and osmotic fragiliy in human red blood cells. J Biol Chem 264: 21340–21345, 1989

    Google Scholar 

  63. Rajeswari P, Natarajan R, Nadler JL, Kumar D: Glucose induces lipid peroxidation and inactivation of membrane associated iron transport enzymes in human erythrocytes in vivo and in vitro. J Cell Physiol 149: 100–109, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesudason, E.P., Masilamoni, J.G., Jesudoss, K.S. et al. The protective role of DL-α-lipoic acid in the oxidative vulnerability triggered by Aβ-amyloid vaccination in mice. Mol Cell Biochem 270, 29–37 (2005). https://doi.org/10.1007/s11010-005-3301-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-3301-z

Key words

Navigation