Skip to main content
Log in

Vascular biomechanical properties in mice with smooth muscle specific deletion of Ndst1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Heparan sulfate proteoglycans act as co-receptors for many chemokines and growth factors. The sulfation pattern of the heparan sulfate chains is a critical regulatory step affecting the binding of chemokines and growth factors. N-deacetylase-N-sulfotransferase1 (Ndst1) is one of the first enzymes to catalyze sulfation. Previously published work has shown that HSPGs alter tangent moduli and stiffness of tissues and cells. We hypothesized that loss of Ndst1 in smooth muscle would lead to significant changes in heparan sulfate modification and the elastic properties of arteries. In line with this hypothesis, the axial tangent modulus was significantly decreased in aorta from mice lacking Ndst1 in smooth muscle (SM22αcre+Ndst1−/−, p < 0.05, n = 5). The decrease in axial tangent modulus was associated with a significant switch in myosin and actin types and isoforms expressed in aorta and isolated aortic vascular smooth muscle cells. In contrast, no changes were found in the compliance of smaller thoracodorsal arteries of SM22αcre+Ndst1−/− mice. In summary, the major findings of this study were that targeted ablation of Ndst1 in smooth muscle cells results in altered biomechanical properties of aorta and differential expression of myosin and actin types and isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471. doi:10.1146/annurev.biochem.71.110601.135458

    Article  PubMed  CAS  Google Scholar 

  2. Kim S-H, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209:139–151. doi:10.1530/joe-10-0377

    Article  PubMed  CAS  Google Scholar 

  3. Kirkpatrick CA, Selleck SB (2007) Heparan sulfate proteoglycans at a glance. J Cell Sci 120:1829–1832. doi:10.1242/jcs.03432

    Article  PubMed  CAS  Google Scholar 

  4. Lander AD, Selleck SB (2000) The elusive functions of proteoglycans: in vivo veritas. J Cell Biol 148:227–232. doi:10.1083/jcb.148.2.227

    Article  PubMed Central  CAS  Google Scholar 

  5. Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a004952

    PubMed Central  PubMed  Google Scholar 

  6. Selleck SB (1998) Genetic analysis of functions for cell surface proteoglycans. Matrix Biol 17:473–476. doi:10.1016/S0945-053X(98)90094-4

    Article  PubMed  CAS  Google Scholar 

  7. Selleck SB (2000) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16:206–212. doi:10.1016/S0168-9525(00)01997-1

    Article  PubMed  CAS  Google Scholar 

  8. Sheng J, Liu R, Xu Y, Liu J (2011) The dominating role of N-deacetylase/N-sulfotransferase 1 in forming domain structures in heparan sulfate. J Biol Chem 286:19768–19776. doi:10.1074/jbc.M111.224311

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Wight TN, Merrilees MJ (2004) Proteoglycans in atherosclerosis and restenosis. Circ Res 94:1158–1167. doi:10.1161/01.res.0000126921.29919.51

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi R, Negishi K, Watanabe A, Arai M, Naganuma F, Ohyama Y, Kurabayashi M (2011) Serum syndecan-4 is a novel biomarker for patients with chronic heart failure. J Cardiol 57:325–332. doi:10.1016/j.jjcc.2011.01.012

    Article  PubMed  Google Scholar 

  11. Vanhoutte D, Schellings MWM, Götte M, Swinnen M, Herias V et al (2007) Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation 115:475–482. doi:10.1161/circulationaha.106.644609

    Article  PubMed  CAS  Google Scholar 

  12. Tannock L, King V (2008) Proteoglycan mediated lipoprotein retention: a mechanism of diabetic atherosclerosis. Rev Endocr Metab Disord 9:289–300. doi:10.1007/s11154-008-9078-0

    Article  PubMed  CAS  Google Scholar 

  13. Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ (2013) Proteoglycans and their roles in brain cancer. FEBS J 280:2399–2417. doi:10.1007/s11154-008-9078-0

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Cotman SL, Halfter W, Cole GJ (2000) Agrin binds to β-amyloid (Aβ), accelerates Aβ fibril formation, and is localized to Aβ deposits in Alzheimer’s disease brain. Mol Cell Neurosci 15:183–198. doi:10.1006/mcne.1999.0816

    Article  PubMed  CAS  Google Scholar 

  15. Chirinos J (2012) Arterial stiffness: basic concepts and measurement techniques. J Cardiovasc Transl Res 5:243–255. doi:10.1007/s12265-012-9359-6

    Article  PubMed  Google Scholar 

  16. Duprez DA, Cohn JN (2007) Arterial stiffness as a risk factor for coronary atherosclerosis. Curr Atheroscler Rep 9:139–144. doi:10.1007/s11883-007-0010-y

    Article  PubMed  Google Scholar 

  17. Balasubramani M, Schreiber EM, Candiello J, Balasubramani GK, Kurtz J, Halfter W (2010) Molecular interactions in the retinal basement membrane system: a proteomic approach. Matrix Biol 29:471–483. doi:10.1016/j.matbio.2010.04.002

    Article  PubMed  CAS  Google Scholar 

  18. Buczek-Thomas JA, Chu CL, Rich CB, Stone PJ, Foster JA, Nugent MA (2002) Heparan sulfate depletion within pulmonary fibroblasts: implications for elastogenesis and repair. J Cell Physiol 192:294–303. doi:10.1002/jcp.10135

    Article  PubMed  CAS  Google Scholar 

  19. Cluff A, Bystrom B, Klimaviciute A, Dahlqvist C, Cebers G, Malmstrom A, Ekman-Ordeberg G (2006) Prolonged labour associated with lower expression of syndecan 3 and connexin 43 in human uterine tissue. Reprod Biol Endocrinol 4:24. doi:10.1186/1477-7827-4-24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Elenius V, Götte M, Reizes O, Elenius K, Bernfield M (2004) Inhibition by the soluble syndecan-1 ectodomains delays wound repair in mice overexpressing syndecan-1. J Biol Chem 279:41928–41935. doi:10.1074/jbc.M404506200

    Article  PubMed  CAS  Google Scholar 

  21. Feldhammer M, Durand S, Mrázová L, Boucher R-M, Laframboise R et al (2009) Sanfilippo syndrome type C: mutation spectrum in the heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT) gene. Hum Mutat 30:918–925. doi:10.1002/humu.20986

    Article  PubMed  CAS  Google Scholar 

  22. Gambillara V, Thacher T, Silacci P, Stergiopulos N (2008) Effects of reduced cyclic stretch on vascular smooth muscle cell function of pig carotids perfused ex vivo. Am J Hypertens 21:425–431. doi:10.1038/ajh.2007.72

    Article  PubMed  Google Scholar 

  23. Gheduzzi D, Guerra D, Bochicchio B, Pepe A, Tamburro AM et al (2005) Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. Matrix Biol 24:15–25. doi:10.1016/j.matbio.2004.12.001

    Article  PubMed  CAS  Google Scholar 

  24. Götte M, Spillmann D, Yip GW, Versteeg E, Echtermeyer FG, van Kuppevelt TH, Kiesel L (2008) Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (ß4GalT-7) deficient form of Ehlers–Danlos syndrome. Hum Mol Genet 17:996–1009. doi:10.1093/hmg/ddm372

    Article  PubMed  CAS  Google Scholar 

  25. Hocking DC, Kowalski K (2002) A cryptic fragment from fibronectin’s III1 module localizes to lipid rafts and stimulates cell growth and contractility. J Cell Biol 158:175–184. doi:10.1083/jcb.200112031

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Hultgårdh-Nilsson A, Durbeej M (2007) Role of the extracellular matrix and its receptors in smooth muscle cell function: implications in vascular development and disease. Curr Opin Lipidol 18:540–545. doi:10.1097/MOL.0b013e3282ef77e9

    Article  PubMed  CAS  Google Scholar 

  27. Huveneers S, Truong H, Fässler R, Sonnenberg A, Danen EHJ (2008) Binding of soluble fibronectin to integrin α5β1—link to focal adhesion redistribution and contractile shape. J Cell Sci 121:2452–2462. doi:10.1242/jcs.033001

    Article  PubMed  CAS  Google Scholar 

  28. Isnard N, Fodil-Bourahla I, Robert AM, Robert L (2004) Pharmacology of skin aging. Stimulation of glycosaminoglycan biosynthesis by l-fucose and fucose-rich polysaccharides, effect of in vitro aging of fibroblasts. Biomed Pharmacother 58:202–204. doi:10.1016/j.biopha.2003.07.002

    Article  PubMed  CAS  Google Scholar 

  29. Jimenez-Vergara AC, Munoz-Pinto DJ, Becerra-Bayona S, Wang B, Iacob A, Hahn MS (2011) Influence of glycosaminoglycan identity on vocal fold fibroblast behavior. Acta Biomater 7:3964–3972. doi:10.1016/j.actbio.2011.06.034

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Marucha J, Tylki-Szymańska A, Jakóbkiewicz-Banecka J, Piotrowska E, Kloska A, Czartoryska B, Węgrzyn G (2011) Improvement in the range of joint motion in seven patients with mucopolysaccharidosis type II during experimental gene expression-targeted isoflavone therapy (GET IT). Am J Med Genet A 155:2257–2262. doi:10.1002/ajmg.a.34146

    Article  CAS  Google Scholar 

  31. Negrini D, Tenstad O, Passi A, Wiig H (2006) Differential degradation of matrix proteoglycans and edema development in rabbit lung. Am J Physiol 290:L470–L477. doi:10.1152/ajplung.0.0310.2005

    CAS  Google Scholar 

  32. Nemes A, Timmermans RM, Wilson JHP, Soliman OI, Krenning B, Cate FJ, Geleijnse ML (2008) The mild form of mucopolysaccharidosis type I (Scheie syndrome) is associated with increased ascending aortic stiffness. Heart Vessels 23:108–111. doi:10.1007/s00380-007-1013-x

    Article  PubMed  Google Scholar 

  33. O’Callaghan R, Job KM, Dull RO, Hlady V (2011) Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy. Am J Physiol 301:L353–L360. doi:10.1152/ajplung.0.0342.2010

    Google Scholar 

  34. Okina E, Manon-Jensen T, Whiteford JR, Couchman JR (2009) Syndecan proteoglycan contributions to cytoskeletal organization and contractility. Scand J Med Sci Sports 19:479–489. doi:10.1111/j.1600-0838.2009.00941.x

    Article  PubMed  CAS  Google Scholar 

  35. Schwinn MK, Gonzalez JM Jr, Gabelt BAT, Sheibani N, Kaufman PL, Peters DM (2010) Heparin II domain of fibronectin mediates contractility through an α4β1 co-signaling pathway. Exp Cell Res 316:1500–1512. doi:10.1016/j.yexcr.2010.03.010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Stum M, Girard E, Bangratz M, Bernard V, Herbin M et al (2008) Evidence of a dosage effect and a physiological endplate acetylcholinesterase deficiency in the first mouse models mimicking Schwartz–Jampel syndrome neuromyotonia. Hum Mol Genet 17:3166–3179. doi:10.1093/hmg/ddn213

    Article  PubMed  CAS  Google Scholar 

  37. Wilusz RE, DeFrate LE, Guilak F (2012) A biomechanical role for perlecan in the pericellular matrix of articular cartilage. Matrix Biol 31:320–327. doi:10.1016/j.matbio.2012.05.002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Yang JJ, Chen YM, Kurokawa T, Gong JP, Onodera S, Onodera S, Yasuda K (2010) Gene expression, glycocalyx assay, and surface properties of human endothelial cells cultured on hydrogel matrix with sulfonic moiety: effect of elasticity of hydrogel. J Biomed Mater Res A 95A:531–542. doi:10.1002/jbm.a.32875

    Article  CAS  Google Scholar 

  39. Shi Z-D, Abraham G, Tarbell JM (2010) Shear stress modulation of smooth muscle cell marker genes in 2-D and 3-D depends on mechanotransduction by heparan sulfate proteoglycans and ERK1/2. PLoS ONE 5:e12196. doi:10.1371/journal.pone.0012196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Adhikari N, Rusch M, Li Q, Selleck SB, Hall JL (2004) Significant alterations in heparan sulfate biosynthesis in response to vascular injury. Circulation 11:III-335

    Google Scholar 

  41. Bingley JA, Hayward IP, Campbell JH, Campbell GR (1998) Arterial heparan sulfate proteoglycans inhibit vascular smooth muscle cell proliferation and phenotype change in vitro and neointimal formation in vivo. J Vasc Surg 28:308–318. doi:10.1016/S0741-5214(98)70167-3

    Article  PubMed  CAS  Google Scholar 

  42. Segev A, Nili N, Strauss BH (2004) The role of perlecan in arterial injury and angiogenesis. Cardiovasc Res 63:603–610. doi:10.1016/j.cardiores.2004.03.028

    Article  PubMed  CAS  Google Scholar 

  43. Theocharis AD, Theocharis DA, De Luca G, Hjerpe A, Karamanos NK (2002) Compositional and structural alterations of chondroitin and dermatan sulfates during the progression of atherosclerosis and aneurysmal dilatation of the human abdominal aorta. Biochimie 84:667–674. doi:10.1016/S0300-9084(02)01428-1

    Article  CAS  Google Scholar 

  44. Tovar AMF, Teixeira LAC, Marinho ACO, Pinho DA, Silva L-F, Mourão PAS (2011) The dermatan sulfate-dependent anticoagulant pathway is mostly preserved in aneurysm and in severe atherosclerotic lesions while the heparan sulfate pathway is disrupted. Clin Chim Acta 412:906–913. doi:10.1016/j.cca.2011.01.016

    Article  PubMed  CAS  Google Scholar 

  45. Tran PK, Tran-Lundmark K, Soininen R, Tryggvason K, Thyberg J, Hedin U (2004) Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ Res 94:550–558. doi:10.1161/01.RES.0000117772.86853.34

    Article  PubMed  CAS  Google Scholar 

  46. Tran-Lundmark K, Tran P-K, Paulsson-Berne G, Friden V, Soininen R et al (2008) Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ Res 103:43–52. doi:10.1161/CIRCRESAHA.108.172833

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Adhikari N, Basi DL, Townsend D, Rusch M, Mariash A, Mullegama S, Watson A, Larson J et al (2010) Heparan sulfate Ndst1 regulates vascular smooth muscle cell proliferation, vessel size and vascular remodeling. J Mol Cell Cardiol 49:287–293. doi:10.1016/j.yjmcc.2010.02.022

    Article  PubMed Central  CAS  Google Scholar 

  48. Barbosa-Morais NL, Dunning MJ, Samarajiwa SA, Darot JFJ, Ritchie ME, Lynch AG, Tavaré S (2010) A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Res 38:e17. doi:10.1093/nar/gkp942

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Ray JL, Leach R, Herbert JM, Benson M (2001) Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci 23:185–188. doi:10.1023/A:1016357510143

    Article  PubMed  CAS  Google Scholar 

  50. Adhikari N, Basi DL, Carlson M, Mariash A, Hong Z et al (2011) Increase in GLUT1 in smooth muscle alters vascular contractility and increases inflammation in response to vascular injury. Arterioscler Thromb Vasc Biol 31:86–94. doi:10.1161/atvbaha.110.215004

    Article  PubMed Central  CAS  Google Scholar 

  51. Billaud M, Lohman AW, Straub AC, Parpaite T, Johnstone SR, Isakson BE (2012) Characterization of the thoracodorsal artery: morphology and reactivity. Microcirculation 19:360–372. doi:10.1111/j.1549-8719.2012.00172.x

    Article  PubMed Central  PubMed  Google Scholar 

  52. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B 57:289–300. doi:10.2307/2346101

    Google Scholar 

  53. Montaniel Kim Ramil C, Billuad M, Graham C, Kim SK, Carlson M, Zeng W, Zeng O, Pan W et al (2012) Smooth muscle specific deletion of Ndst1 leads to decreased vessel luminal area and no change in blood pressure in conscious mice. J Cardiovasc Transl Res 5:274–279. doi:10.1007/s12265-012-9369-4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Agianniotis A, Stergiopulos N (2012) Wall properties of the apolipoprotein E-deficient mouse aorta. Atherosclerosis 223:314–320. doi:10.1016/j.atherosclerosis.2012.06.014

    Article  PubMed  CAS  Google Scholar 

  55. Eberth JF, Popovic N, Gresham VC, Wilson E, Humphrey JD (2010) Time course of carotid artery growth and remodeling in response to altered pulsatility. Am J Physiol 299:H1875–H1883. doi:10.1152/ajpheart.0.0872.2009

    CAS  Google Scholar 

  56. Hayenga HN, Trache A, Trzeciakowski J, Humphrey JD (2011) Regional atherosclerotic plaque properties in ApoE−/− mice quantified by atomic force, immunofluorescence, and light microscopy. J Vasc Res 48:495–504. doi:10.1159/000329586

    Article  PubMed  CAS  Google Scholar 

  57. Frid MG, Aldashev AA, Dempsey EC, Stenmark KR (1997) Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities. Circ Res 81:940–952. doi:10.1161/01.res.81.6.940

    Article  PubMed  CAS  Google Scholar 

  58. Hao H, Ropraz P, Verin V, Camenzind E, Geinoz A, Pepper MS, Gabbiani G, Bochaton-Piallat M-L (2002) Heterogeneity of smooth muscle cell populations cultured from pig coronary artery. Arterioscler Thromb Vasc Biol 22:1093–1099. doi:10.1161/01.atv.0000022407.91111.e4

    Article  PubMed  CAS  Google Scholar 

  59. Koyama N, Kinsella M, Wight TN, Hedin U, Clowes AW (1998) Heparan sulfate proteoglycans mediate a potent inhibitory signal for migration of vascular smooth muscle cells. Circ Res 83:305–313. doi:10.1161/01.res.83.3.305

    Article  PubMed  CAS  Google Scholar 

  60. Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin D-G, Giardina C (2010) Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 15:431–442. doi:10.1007/s12192-009-0159-0

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Lachaud CC, Pezzolla D, Domínguez-Rodríguez A, Smani T, Soria B, Hmadcha A (2013) Functional vascular smooth muscle-like cells derived from adult mouse uterine mesothelial cells. PLoS ONE 8:e55181. doi:10.1371/journal.pone.0055181

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Zielinska M, Sawosz E, Grodzik M, Wierzbicki M, Gromadka M et al (2011) Effect of heparan sulfate and gold nanoparticles on muscle development during embryogenesis. Int J Nanomed 6:3163–3172. doi:10.2147/Ijn.S26070

    CAS  Google Scholar 

  63. Mohamed JS, Boriek AM (2012) Loss of desmin triggers mechanosensitivity and up-regulation of Ankrd1 expression through Akt-NF-κB signaling pathway in smooth muscle cells. FASEB J 26:757–765. doi:10.1096/fj.10-160291

    Article  PubMed  CAS  Google Scholar 

  64. Hu G, Zhou R, Liu J, Gong A-Y, Eischeid AN, Dittman JW, Chen X-M (2009) MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. J Immunol 183:1617–1624. doi:10.4049/jimmunol.0804362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Khor CC, Vannberg FO, Chapman SJ, Guo H, Wong SH et al (2010) CISH and susceptibility to infectious diseases. N Engl J Med 362:2092–2101. doi:10.1056/NEJMoa0905606

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Ram PA, Waxman DJ (1999) SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274:35553–35561

    Article  PubMed  CAS  Google Scholar 

  67. Karlsson-Lindahl L, Schmidt L, Haage D, Hansson C, Taube M et al (2012) Heparanase affects food intake and regulates energy balance in mice. PLoS ONE 7:e34313. doi:10.1074/jbc.274.50.35553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Ren Y, Kirkpatrick CA, Rawson JM, Sun M, Selleck SB (2009) Cell type-specific requirements for heparan sulfate biosynthesis at the Drosophila neuromuscular junction: effects on synapse function, membrane trafficking, and mitochondrial localization. J Neurosci 29:8539–8550. doi:10.1523/jneurosci.5587-08.2009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Sarparanta J (2008) Biology of myospryn: what’s known? J Muscle Res Cell Motil 29:177–180. doi:10.1007/s10974-008-9165-6

    Article  PubMed  CAS  Google Scholar 

  70. Kouloumenta A, Mavroidis M, Capetanaki Y (2007) Proper perinuclear localization of the TRIM-like protein myospryn requires its binding partner desmin. J Biol Chem 282:35211–35221. doi:10.1074/jbc.M704733200

    Article  PubMed  CAS  Google Scholar 

  71. Knöll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I et al (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111:943–955. doi:10.1016/S0092-8674(02)01226-6

    Article  PubMed  Google Scholar 

  72. Wang X, Li Q, Adhikari N, Hall JL (2006) A role for muscle LIM protein (MLP) in vascular remodeling. J Mol Cell Cardiol 40:503–509. doi:10.1016/j.yjmcc.2006.01.005

    Article  PubMed  CAS  Google Scholar 

  73. Amatschek S, Lucas R, Eger A, Pflueger M, Hundsberger H et al (2011) CXCL9 induces chemotaxis, chemorepulsion and endothelial barrier disruption through CXCR3-mediated activation of melanoma cells. Br J Cancer 469–479. doi:10.1038/sj.bjc.6606056

  74. Lu X, Wang L, Chen S, He L, Yang X et al (2012) Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet 44:890–894. doi:10.1038/ng.2337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. The International Consortium for Blood Pressure Genome-Wide Association Studies (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109. doi:10.1038/nature10405

    Article  PubMed Central  CAS  Google Scholar 

  76. Schudt C, Hatzelmann A, Beume R, Tenor H (2011) Phosphodiesterase inhibitors: history of pharmacology. In: Francis SH, Conti M, Houslay MD (eds) Phosphodiesterases as drug targets. Springer, Berlin, pp 1–46. doi:10.1007/978-3-642-17969-3_1

  77. Withrington PG, Dhume VG, Croxton R, Gerbes AL (1990) The actions of human atrial natriuretic factor on hepatic arterial and portal vascular beds of the anaesthetized dog. Br J Pharmacol 99:810–814. doi:10.1111/j.1476-5381.1990.tb13011.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Echaniz-Laguna A, Rene F, Marcel C, Bangratz M, Fontaine B, Loeffler J-P, Nicole S (2009) Electrophysiological studies in a mouse model of Schwartz–Jampel syndrome demonstrate muscle fiber hyperactivity of peripheral nerve origin. Muscle Nerve 40:55–61. doi:10.1111/j.1476-5381.1990.tb13011.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a R01 to JLH (National Institute of Health-R01HL081715). Special thanks to the staff of the Histology Core facility, Lillehei Heart Institute, and Cynthia Dekay, Graphic Designer, Lillehei Heart Institute, for their help in the preparation of this manuscript.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Hall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhikari, N., Billaud, M., Carlson, M. et al. Vascular biomechanical properties in mice with smooth muscle specific deletion of Ndst1. Mol Cell Biochem 385, 225–238 (2014). https://doi.org/10.1007/s11010-013-1831-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1831-3

Keywords

Navigation