Skip to main content
Log in

Colorimetric determination of mercury(II) ion based on DNA-assisted amalgamation: a comparison study on gold, silver and Ag@Au Nanoplates

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Inspired by the increasing use of plasmonic gold and silver nanoplates as probes for diverse analytes, the research community often questions which metal nanoplates should be chosen for a given application. A comparative study was performed on the performance and physicochemical properties of three types of metal nanoplates for use in plasmonic detection of Hg(II) ion. Specifically, gold, silver and Ag@Au nanoplates were studied. The established amalgamation method integrated into a detection scheme using nanoplates affords a unique yet straightforward signaling and extraction route for selective recognition of Hg(II) ion. Upon transformation of Hg(II) ion to metallic mercury, nanoplate amalgamation takes place instantly. This reshapes both the morphology and the optical characteristics of nanoplates. It is found that gold and Ag@Au nanoplates enable highly selective quantitation of Hg(II) ion by using a DNA oligomer consisting of poly-deoxycytidine (poly(C)) as a masking agent against Ag(I) ion. The silver nanoplates, in turn, display the best sensitivity owing to the chemical instability. The induced surface plasmonic shifts (of up to 250 nm and color changes from red to green) allows for determination of Hg(II) over a wide range and with a limit of detection of ~10 nM. It is recommended that the gold and Ag@Au nanoplates are used in relatively complex systems, while silver nanoplates are suited for simple matrices.

The amalgamation process integrated with metal (e.g., Au, Ag and Ag@Au) nanoplates affords plasmonic detection of Hg(II) ion with the aid of a poly(c) DNA sequence as the masking agent for Ag(I) ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology: volume 3: environmental toxicology. Springer

  2. Beal SA, Osterberg EC, Zdanowicz CM, Fisher DA (2015) Ice core perspective on mercury pollution during the past 600 years. Environ Sci Technol 49:7641–7647

    Article  CAS  Google Scholar 

  3. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  CAS  Google Scholar 

  4. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25:1–24

    Article  CAS  Google Scholar 

  5. Bortoli A, Gerotto M, Marchiori M, Muntau H, Rehnert A (1995) Critical comparison of methods for mercury determination in fish. Microchim Acta 119:305–310

    Article  CAS  Google Scholar 

  6. Martín-Yerga D, González-García MB, Costa-García A (2013) Electrochemical determination of mercury: a review. Talata 116:1091–1104

    Google Scholar 

  7. Díez-Gil C, Martínez R, Ratera I, Hirsh T, Espinosa A (2011) Selective picomolar detection of mercury(II) using optical sensors. Chem Commun 47:1842

    Article  Google Scholar 

  8. Chansuvarn W, Tuntulani T, Imyim A (2015) Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. Trac-trend Anal Chem 65:83–96

    Article  CAS  Google Scholar 

  9. Wang G, Wang Y, Chen L (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25:1859–1868

    Article  CAS  Google Scholar 

  10. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  11. Wang J, Liu B (2008) Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr Green I. Chem Commun 44:4759–4761

    Article  Google Scholar 

  12. Liu X, Tang Y, Wang L, Zhang J (2007) Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides. Adv Mater 19:1662–1662

    Article  Google Scholar 

  13. Kolpashchikov DM (2008) Split DNA enzyme for visual single nucleotide polymorphism typing. J Am Chem Soc 130:2934–2935

    Article  CAS  Google Scholar 

  14. Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal Bioanal Chem 394:33–46

    Article  CAS  Google Scholar 

  15. Lee J-S, Mirkin CA (2008) Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal Chem 80:6805–6808

    Article  CAS  Google Scholar 

  16. Su D, Yang X, Xia Q, Chai F, Wang C, Qu F (2013) Colorimetric detection of Hg2+ using thioctic acid functionalzied gold nanoparticles. RSC Adv 3:24618–24624

    Article  CAS  Google Scholar 

  17. Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT (2008) Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun (Camb):2242–2244

  18. Wang W, Chen C, Qian M, Zhao XS (2008) Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem 373:213–219

    Article  CAS  Google Scholar 

  19. Rex M, Hernandez FE, Campiglia AD (2006) Pushing the limits of mercury sensors with gold nanorods. Anal Chem 78:445–451

    Article  CAS  Google Scholar 

  20. Wang G, Chen Z, Wang W, Yan B, Chen L (2011) Chemical redox-regulated mesoporous silica-coated gold nanorods for colorimetric probing of Hg2+ and S2−. Analyst 136:174–178

    Article  CAS  Google Scholar 

  21. Atkins P, Paula JD (2006) Physical chemistry, 8th edn. Oxford Univ. Press, New York

    Google Scholar 

  22. Wang G, Tao S, Liu Y, Guo L, Qin G, Ijiro K, Maeda M, Yin Y (2016) High-yield halide-free synthesis of biocompatible Au nanoplates. Chem Commun 52:398–401

    Article  CAS  Google Scholar 

  23. Chen L, Ji F, Xu Y, He L, Mi Y, Bao F, Sun B, Zhang X, Zhang Q (2014) High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett 14:7201–7206

    Article  CAS  Google Scholar 

  24. Wang G, Akiyama Y, Takarada T, Maeda M (2016) Rapid non-crosslinking aggregation of DNA-functionalized gold nanorods and nanotriangles for colorimetric single-nucleotide discrimination. Chem-Eur J 22:258–263

    Article  Google Scholar 

  25. Chang C-C, Wang G, Takarada T, Maeda M (2017) Iodine-mediated etching of triangular gold nanoplates for colorimetric sensing of copper ion and aptasensing of chloramphenicol. ACS Appl Mater Interfaces 9:34518–34525

    Article  CAS  Google Scholar 

  26. Zhao C, Wang G, Takarada T, Liang X, Komiyama M, Maedab M (2019) Shape-selective isolation of au nanoplates from complex colloidal media by depletion flocculation. Colloid Surface A 568:216–223

    Article  CAS  Google Scholar 

  27. Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc 133:18931–18939

    Article  CAS  Google Scholar 

  28. Gao C, Lu Z, Liu Y, Zhang Q, Chi M, Cheng Q, Yin Y (2012) Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew Chem Int Ed Eng 51:5629–5633

    Article  CAS  Google Scholar 

  29. Jin L-H, Han C-S (2014) Eco-friendly colorimetric detection of mercury(II) ions using label-free anisotropic nanogolds in ascorbic acid solution. Sensor Actuat B-Chem 195:239–245

    Article  CAS  Google Scholar 

  30. Chaudhary A, Dwivedi C, Chawla M, Gupta A, Nandi CK (2015) Lysine and dithiothreitol promoted ultrasensitive optical and colorimetric detection of mercury using anisotropic gold nanoparticles. J Mater Chem C 3:6962–6965

    Article  CAS  Google Scholar 

  31. Wang Y, Yang F, Yang X (2010) Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosens Bioelectron 25:1994–1998

    Article  CAS  Google Scholar 

  32. Shiva PK, Govindaraju S, Chandan S (2018) Functionalized silver nano-sensor for colorimetric detection of Hg2+ ions: facile synthesis and docking studies. Sensors 18:2698

    Article  Google Scholar 

  33. Chen L, Fu X, Lu W, Chen L (2013) Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms. ACS Appl Mater Interfaces 5:284–290

    Article  CAS  Google Scholar 

  34. Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y (2008) Specific interactions between silver(I) ions and cytosine–cytosine pairs in DNA duplexes. Chem Commun 44:4825–4827

    Article  Google Scholar 

  35. Hu S, Yi T, Huang Z, Liu B, Wang J, Yi X, Liu J (2019) Etching silver nanoparticles using DNA. Mater Horiz 6:155–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Natural Science Foundation of China for Young Researchers (No. 21805263) and a START-UP Fund from Ocean University of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqing Wang or Xingguo Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Supporting Information. Detailed synthetic protocols, additional TEM images, spectral analysis and control experimental results. (DOCX 1.75 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, L., Wang, L. et al. Colorimetric determination of mercury(II) ion based on DNA-assisted amalgamation: a comparison study on gold, silver and Ag@Au Nanoplates. Microchim Acta 186, 713 (2019). https://doi.org/10.1007/s00604-019-3873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3873-z

Keywords

Navigation