Skip to main content
Log in

Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanism of oxidation-assisted growth of surface cracks during fatigue with compressive holds has been studied experimentally and via a model that describes the role of oxide and substrate properties. The creep-based finite element model has been employed to examine the role of material parameters in the damage evolution in a Ni-base single-crystal superalloy René N5. Low-cycle fatigue experiments with compressive holds were conducted at 1255 K and 1366 K (982 °C and 1093 °C). Interrupted and failed specimens were characterized for crack depth and spacing, oxide thickness, and microstructural evolution. Comparison of experimental to modeled hysteresis loops indicates that transient creep drives the macroscopic stress–strain response. Crack penetration rates are strongly influenced by growth stresses in the oxide, structural evolution in the substrate, and the development of \(\gamma ^{\prime }\) denuded zones. Implications for design of alloys resistant to this mode of degradation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Le Bihan, P.-Y. Joubert, and D. Placko: NDT E Int., 2001, vol. 34, pp. 363–368.

    Article  Google Scholar 

  2. A. Evans, M. He, A. Suzuki, M. Gigliotti, B. Hazel, and T. Pollock: Acta Mater., 2009, vol. 57, pp. 2969–2983.

    Article  Google Scholar 

  3. T. Strangman: in Superalloys 1992, S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds.,TMS, Warrendale, PA, 1992, pp. 795–804.

  4. J.W. Holmes and F.A. McClintock: Metall. Trans. A, 1990, vol. 21, pp. 1209–1222.

    Article  Google Scholar 

  5. A. Suzuki, M. Gigliotti, B. Hazel, D. Konitzer, and T. Pollock: Metall. Mater. Trans. A, 2010, vol. 41, pp. 947–956.

    Article  Google Scholar 

  6. W.-J. Zhang: Mater. Sci. Eng. A, 2016, vol. 650, pp. 389–395.

    Article  Google Scholar 

  7. N. Isobe and S. Sakuri: J. Soc. Mater. Sci. Japan, 2003, vol. 52, pp. 29–33.

    Article  Google Scholar 

  8. S. Yandt, D. Seo, P. Au, N. Tsuno, and A. Sato: Can. Metall. Q., 2013, vol. 50, pp. 303–310.

    Article  Google Scholar 

  9. C.A. Yablinsky, K.M. Flores, M.J. Mills, J.C. Williams, and J.Rigney: in Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 535–40.

  10. S. Yandt, X. Wu, N. Tsuno, and A. Sato: in Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman, eds., TMS, Warrendale, PA, 2012, pp. 501–08.

  11. M. He and A. Evans: Acta Mater., 2010, vol. 58, pp. 583–591.

    Article  Google Scholar 

  12. T.M. Pollock, B. Laux, C.L. Brundidge, A. Suzuki, and M.Y. He: J. Am. Ceram. Soc., 2011, vol. 94, pp. s136–s145.

    Article  Google Scholar 

  13. S. Patil, S. Huang, M. Karadge, D. Konitzer, and A. Suzuki: in Superalloys 2016, M. Hardy, E.S. Huron, U. Glatzel, B. Griffin, B. Lewis, C.M.F. Rae, V. Seetharaman, and S. Tin, eds., TMS, Warrendale, PA, 2016, pp. 959–67.

  14. A. W. Davis and A. G. Evans: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2085–2095.

    Article  Google Scholar 

  15. J. A. Nychka and D. R. Clarke: Oxid. Met., 2005, vol. 63, pp. 325–352.

    Article  Google Scholar 

  16. V. K. Tolpygo and D. R. Clarke: Mater. High Temp., 2003, vol. 20, pp. 261–271.

    Article  Google Scholar 

  17. D. S. Balint and J. W. Hutchinson: J. Mech. Phys. Solids, 2005, vol. 53, pp. 949–973.

    Article  Google Scholar 

  18. D. Clarke: Acta Mater., 2003, vol. 51, pp. 1393–1407.

    Article  Google Scholar 

  19. A. Heuer, A. Reddy, D. Hovis, B. Veal, A. Paulikas, A. Vlad, and M. Rühle: Scr. Mater., 2006, vol. 54, pp. 1907–1912.

    Article  Google Scholar 

  20. D. Hovis, L. Hu, A. Reddy, A. H. Heuer, A. P. Paulikas, and B. W. Veal: Int. J. Mater. Res., 2007, vol. 98, pp. 1209–1213.

    Article  Google Scholar 

  21. L. H. Rettberg, B. Laux, M. Y. He, D. Hovis, A. H. Heuer, and T. M. Pollock: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1132–1142.

    Article  Google Scholar 

  22. A. Suzuki, Y. Gao, D. Lipkin, A. Singhal, M. Krug, D. Konitzer, J. Almer, T. Pollock, and B. Bewlay: MATEC Web Conf., 2014, vol. 14, p. 04004.

    Article  Google Scholar 

  23. T. Pollock and S. Tin: J. Propuls. power, 2006, vol. 22, pp. 361–374.

    Article  Google Scholar 

  24. S. Tin, T. M. Pollock, and W. Murphy: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1743–1753.

    Article  Google Scholar 

  25. L. Rettberg, M. Tsunekane, and T. Pollock: in Superalloys 2012, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman, eds., TMS, Warrendale, PA, 2012, pp. 341–49.

  26. E. Fleury and L. Rémy: Mater. Sci. Eng. A, 1993, vol. 167, pp. 23–30.

    Article  Google Scholar 

  27. E. Fleischmann, C. Konrad, J. Preußner, R. Völkl, E. Affeldt, and U. Glatzel: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1125–1130.

    Article  Google Scholar 

  28. T. M. Pollock and R. D. Field: Dislocations in Solids, 2002, vol. 11, pp. 593–595.

    Google Scholar 

  29. J. M. Alvarado-Orozco, R. Morales-Estrella, M. S. Boldrick, G. Trapaga-Martinez, B. Gleeson, and J. Munoz-Saldana: Metall. Mater. Trans. A, 2015, vol. 46, pp. 726–738.

    Article  Google Scholar 

  30. B. A. Pint, J. R. Martin, and L. W. Hobbs: Solid State Ionics, 1995, vol. 78, pp. 99–107.

    Article  Google Scholar 

  31. A. H. Heuer, T. Nakagawa, M. Z. Azar, D. B. Hovis, J. L. Smialek, B. Gleeson, N. D. M. Hine, H. Guhl, H. S. Lee, P. Tangney, W. M. C. Foulkes, and M. W. Finnis: Acta Mater., 2013, vol. 61, pp. 6670–6683.

    Article  Google Scholar 

  32. D. Pan, M. Chen, P. Wright, and K. Hemker: Acta Mater., 2003, vol. 51, pp. 2205–2217.

    Article  Google Scholar 

  33. K. J. Hemker, B. G. Mendis, and C. Eberl: Mater. Sci. Eng. A, 2008, vol. 483-484, pp. 727–730.

    Article  Google Scholar 

  34. A. Pandey, V. K. Tolpygo, and K. J. Hemker: JOM, 2013, vol. 65, pp. 542–549.

    Article  Google Scholar 

  35. W. Brindley and J. Whittenberger: Mater. Sci. Eng. A, 1993, vol. 163, pp. 33–41.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of ONR Grant N00014-16-1-2073. Useful discussions with Akane Suzuki (GE Global Research) are acknowledged. Dr. Britta Laux is thanked for assistance with initial specimen testing and characterization. This work also made use of the MRL Shared Experimental Facilities supported by the MRSEC Program of the NSF under Award No. DMR 1121053; a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Lafata.

Additional information

Manuscript submitted June 8, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafata, M.A., Rettberg, L.H., He, M.Y. et al. Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds. Metall Mater Trans A 49, 105–116 (2018). https://doi.org/10.1007/s11661-017-4392-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4392-3

Navigation