Skip to main content

Advertisement

Log in

Improved Creep Behavior of Ferritic-Martensitic Alloy T91 by Subgrain Boundary Density Enhancement

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of this study was to increase the creep strength of the ferritic-martensitic (F-M) alloy T91 by enhancing the subgrain boundary density. A thermomechanical treatment involving a 5 pct compression treatment, followed by an annealing treatment at 1050 °C for 1 hour, then air cooling, and a tempering treatment at 800 °C for 0.66 hours, then another air cooling, resulted in an increase in the subgrain boundary density of ∼39 pct, without altering any of the other microstructural features. Creep tests were conducted on both as-received (AR) and subgrain-boundary-enhanced (SGBE) conditions of the F-M alloy T91, over a temperature range of 500 °C to 600 °C and in the stress range of 150 to 255 MPa in argon. The T91-AR exhibited a higher creep rate than the T91-SGBE by a factor of ∼2.0 to 8.0. The ratio of time to rupture for the T91-SGBE compared to the T91-AR varied from 1.0 to 5.0. In general, higher ratios were seen at higher stresses. Creep behavior was analyzed on the basis of the Orowan equation, according to which creep rate is controlled by the mobile dislocation density and dislocation velocity. Internal stress calculations performed on both conditions showed a higher internal stress in the T91-SGBE by ∼10 MPa. Analysis of the sources of internal stress suggest that the higher value for the SGBE condition is due to subgrain boundary density enhancement. The SGBE condition exhibited a temperature-increment benefit of between 8 °C and 26 °C, such that the creep strength realized for the T91-SGBE was similar to that realized for the T91-AR, but at a higher temperature. The temperature-increment benefit increased exponentially with applied stress but less so with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. G. Gupta and G.S. Was: J. ASTM Int., 2005, vol. 2 (3)

  2. S. Spigarelli, E. Cerrie, P. Bianchi, E. Evangelista: Mater. Sci. Technol., 1999, vol. 15, pp. 1433–40

    CAS  Google Scholar 

  3. P. Anderson, T. Bellgardt, F.L. Jones: Mater. Sci. Technol., 2003, vol. 19, pp. 207–13

    CAS  Google Scholar 

  4. P.J. Ennis and A. Czyrska-Filemonowicz: OMMI, 2002, vol. 1 (1)

  5. N. Eberle, F.L. Jones: Mater. Sci. Technol., 2003, vol. 19, pp. 214–18

    Article  CAS  Google Scholar 

  6. A. Fujio: Mater. Sci. Eng., A, 2004, vols. 387–389 (1–2), pp. 565–69

    Google Scholar 

  7. G. Eggeler: Acta Metall., 1989, vol. 37 (12), pp. 3225–34

    Article  CAS  Google Scholar 

  8. F. Abe, T. Horiuchi, M. Taneike, K. Sawada: Mater. Sci. Eng., A, 2004, vol. 378, pp. 299–303

    Article  CAS  Google Scholar 

  9. V. Sklenicka, K. Kucharova, A. Dlouhy, J. Krejci: in Materials for Advanced Power Engineering, D. Coutsouradis et al., eds., Kluwer Academic Publisher, Netherlands, 1994, p. 435

    Google Scholar 

  10. G. Gupta, B. Alexandreanu, G.S. Was: Metall. Mater. Trans. A, 2004, vol. 35A (2), pp. 717–19

    Article  CAS  Google Scholar 

  11. G. Gupta: Doctoral Thesis, University of Michigan, Ann Arbor, MI, 2007

  12. P. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals, Krieger Publishing Company, Malabar, 1977

    Google Scholar 

  13. M.H. Loretto: Electron Beam Analysis of Materials, Chapman and Hall, London, 1994

    Google Scholar 

  14. E. Nes, K. Marthinsen, B. Holmedal: Mater. Sci. Technol., 2004, vol. 20, p. 1337

    Article  CAS  Google Scholar 

  15. A. Kostka, K.G. Tak, G. Eggeler: Acta Mater., 2007, vol. 55, pp. 539–50

    Article  CAS  Google Scholar 

  16. J. Pesicka, R. Kuzel, A. Dronhofer, G. Eggeler: Acta Mater., 2003, vol. 51, pp. 4847–62

    Article  CAS  Google Scholar 

  17. J. Pescika, A. Dronhofer, G. Eggeler: Mater. Sci. Eng., A, 2004, vols. 387–389, pp. 176–80

    Google Scholar 

  18. U.S. Kocks: Prog. Mater Sci., 1975, vol. 19

  19. J. Cadek: Creep in Metallic Materials, Elsevier Science Publishing Company, Inc., New York, NY, 1988

    Google Scholar 

  20. N. Baluc, R. Schaublin, P. Spatig, and M. Victoria: 21st Int. Symp., ASTM STP 144 1447, M.L. Grossbeck, T.R. Allen, R.G. Lott, and A.S. Kumar, eds., ASTM International, West Conshohocken, PA, 2004

  21. F. Dobes, A. Orlova: Mater. Sci. Forum, 2005, vol. 482, pp. 291–94

    Article  Google Scholar 

  22. H. Wiedersich: J. Met., 1964, vol. 16, p. 425

    CAS  Google Scholar 

  23. A. Orlova: Mater. Sci. Eng., A, 2001, vol. A297, pp. 281–85

    CAS  Google Scholar 

  24. E. Nes, K. Marthinsen, B. Holmedal: Mater. Sci. Technol., 2004, vol. 20, p. 1337

    Article  CAS  Google Scholar 

  25. G. Dimmler: Doctoral Thesis, Graz University of Technology, 2003 (in German)

  26. R.L. Fleischer: Acta Metall., 1963, vol. 11, p. 203

    Article  CAS  Google Scholar 

  27. A. Seeger: Proc. 2nd United Nations Int. Conf. on the Peaceful Uses of Atomic Energy, United Nations, New York, NY, 1958, vol. 6, p. 250

  28. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill Book Company, New York, NY, 1981, pp. 166–74

    Google Scholar 

  29. G.E. Lucas: J. Nucl. Mater., 1993, vol. 206, pp. 287–305

    Article  CAS  Google Scholar 

  30. R. Schaeublin, D. Gelles, M. Victoria: J. Nucl. Mater., 2002, vols. 307–311, pp. 197–202

    Article  Google Scholar 

  31. S.J. Zinkle: Radiat. Eff. Def. Solids, 1999, vol. 148, p. 377

    Article  Google Scholar 

  32. A.J.E. Foreman, M.J. Makin: Can. J. Phys., 1967, vol. 45, p. 511

    CAS  Google Scholar 

  33. U.S. Kocks: Physics of Strength and Plasticity, MIT Press, Cambridge, MA, 1969, p. 143

    Google Scholar 

  34. S.J. Zinkle, Y. Matsukawa: J. Nucl. Mater., 2004, vols. 329–333, pp. 88–96

    Article  CAS  Google Scholar 

  35. A. Di Gianfrancesco et al.: La Rev. Metall., 2001, pp. 117–23

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gupta.

Additional information

Manuscript submitted July 2, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, G., Was, G. Improved Creep Behavior of Ferritic-Martensitic Alloy T91 by Subgrain Boundary Density Enhancement. Metall Mater Trans A 39, 150–164 (2008). https://doi.org/10.1007/s11661-007-9411-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9411-3

Keywords

Navigation