Skip to main content

Advertisement

Log in

Nodularin concentrations in Baltic Sea zooplankton and fish during a cyanobacterial bloom

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Toxic cyanobacterial blooms, dominated by Nodularia spumigena, are a recurrent phenomenon in the Baltic Sea during late summer. Nodularin, a potent hepatotoxin, has been previously observed to accumulate on different trophic levels, in zooplankton, mysid shrimps, fish as well as benthic organisms, even in waterfowl. While the largest concentrations of nodularin have been measured from the benthic organisms and the food web originating from them, the concentrations in the pelagic organisms are not negligible. The observations on concentrations in zooplankton and planktivorous fish are sporadic, however. A field study in the Gulf of Finland, northern Baltic Sea, was conducted during cyanobacterial bloom season where zooplankton (copepod Eurytemora affinis, cladoceran Pleopsis polyphemoides) and fish (herring, sprat, three-spined stickleback) samples for toxin analyses were collected from the same sampling areas, concurrently with phytoplankton community samples. N. spumigena was most abundant in the eastern Gulf of Finland. In this same sampling area, cladoceran P. polyphemoides contained more nodularin than in the other areas, suggesting that this species has a low capacity to avoid cyanobacterial exposure when the abundance of cyanobacterial filaments is high. In copepod E. affinis nodularin concentrations were high in all of the sampling areas, irrespective of the N. spumigena cell numbers. Furthermore, nodularin concentrations in herring samples were highest in the eastern Gulf of Finland. Three-spined stickleback contained the highest concentrations of nodularin of all the three fish species included in this study, probably because it prefers upper water layers where also the risk of nodularin accumulation in zooplankton is the highest. No linear relationship was found between N. spumigena abundance and nodularin concentration in zooplankton and fish, but in the eastern area where the most dense surface-floating bloom was observed, the nodularin concentrations in zooplankton were high. The maximum concentrations in zooplankton and fish samples in this study were higher than measured before, suggesting that the temporal variation of nodularin concentrations in pelagic communities can be large, and vary from negligible to potentially harmful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrhenius F, Hansson S (1998) Growth of Baltic Sea young-of-the-year herring Clupea harengus is resource limited. Mar Ecol Prog Ser 191:295–299. doi:10.3354/meps191295

    Article  Google Scholar 

  • Burris JE (1980) Vertical migration of zooplankton in the Gulf of Finland. Am Midl Nat 103:316–322. doi:10.2307/2424629

    Article  Google Scholar 

  • Bury NR, Newlands AD, Eddy FB, Codd GA (1998) In vivo and in vitro intestinal transport of 3H-microcystin-LR, a cyanobacterial toxin, in rainbow trout (Oncorhyncus mykiss). Aquat Toxicol 42:139–148. doi:10.1016/S0166-445X(98)00041-1

    Article  CAS  Google Scholar 

  • Casini M, Cardinale M, Arrhenius F (2004) Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES J Mar Sci 61:1267–1277. doi:10.1016/j.icesjms.2003.12.011

    Article  Google Scholar 

  • De Maagd P, Hendriks AJ, Seinen W, Sijm DTHM (1999) pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR. Water Res 33:677–680. doi:10.1016/S0043-1354(98)00258-9

    Article  Google Scholar 

  • Engström J, Koski M, Viitasalo M, Reinikainen M, Repka S, Sivonen K (2000) Feeding interactions of Eurytemora affinis and Acartia bifilosa with toxic and non-toxic Nodularia sp. J Plankton Res 22:1403–1409. doi:10.1093/plankt/22.7.1403

    Article  Google Scholar 

  • Flinkman J, Pääkkönen J-P, Saesmaa S, Bruun J (2007) Zooplankton time series 1979–2005 in the Baltic Sea—life in a vice of bottom-up and top-down forces. In: Olsonen R (ed) FIMR monitoring of the Baltic Sea environment—annual report 2006. MERI—Report Series of the Finnish Institute of Marine Research No. 59, pp 73–86

  • Gasparini S, Castel J (1997) Autotrophic and heterotrophic nanoplankton in the diet of the estuarine copepods Eurytemora affinis and Acartia bifilosa. J Plant Res 19:877–890

    Google Scholar 

  • HELCOM (2003) The Baltic marine environment 1999–2002. Baltic environment proceedings, p 87. 48

  • Kahru M, Horstmann U, Rud O (1994) Satellite detection of increased cyanobacteria blooms in the Baltic Sea—natural fluctuation or ecosystem change. Ambio 23:469–472

    Google Scholar 

  • Kankaanpää HT, Sipiä VO, Kuparinen JS, Ott JL, Carmichael WW (2001) Nodularin analyses and toxicity of a Nodularia spumigena (Nostocales, Cyanobacteria) water-bloom in the western Gulf of Finland, Baltic Sea, in August 1999. Phycologia 40:268–274

    Article  Google Scholar 

  • Kankaanpää HT, Turunen A-K, Karlsson K, Bylund G, Meriluoto J, Sipiä V (2005) Heterogeneity of nodularin bioaccumulation in northern Baltic Sea flounders in 2002. Chemosphere 59:1091–1097. doi:10.1016/j.chemosphere.2004.12.010

    Article  Google Scholar 

  • Karjalainen M, Reinikainen M, Spoof L, Meriluoto J, Sivonen K, Viitasalo M (2005) Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: consequences for pike larvae and mysid shrimps. Environ Toxicol 20:354–362. doi:10.1002/tox.20112

    Article  CAS  Google Scholar 

  • Karjalainen M, Kozlowsky-Suzuki B, Lehtiniemi M, Engström-Öst J, Kankaanpää H, Viitasalo M (2006) Nodularin accumulation during cyanobacterial blooms and experimental depuration in zooplankton. Mar Biol (Berl) 148:683–691. doi:10.1007/s00227-005-0126-y

    Article  Google Scholar 

  • Karlsson KM, Kankaanpää H, Huttunen M, Meriluoto J (2005a) First observation of microcystin-LR in pelagic cyanobacterial blooms in the northern Baltic Sea. Harmful Algae 4:163–166. doi:10.1016/j.hal.2004.02.002

    Article  CAS  Google Scholar 

  • Karlsson KM, Spoof LEM, Meriluoto JAO (2005b) Quantitative LC-ESI-MS analyses of microcystins and nodularin-R in animal tissue—matrix effects and method validation. Environ Toxicol 20:381–389. doi:10.1002/tox.20115

    Article  CAS  Google Scholar 

  • Kononen K, Sivonen K, Lehtimäki J (1993) Toxicity of the phytoplankton blooms in the Gulf of Finland and Gulf of Bothnia, Baltic Sea. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier Science, Amsterdam, pp 98–112

    Google Scholar 

  • Kononen K, Kuparinen J, Mäkelä K, Laanemets J, Pavelson J, Nõmmann S (1996) Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnol Oceanogr 41:98–112

    Article  CAS  Google Scholar 

  • Kononen K, Hällfors S, Kokkonen M, Kuosa H, Laanemets J, Pavelson J et al (1998) Development of a subsurface chlorophyll maximum at the entrance to the Gulf of Finland, Baltic Sea. Limnol Oceanogr 43:1089–1106

    Article  CAS  Google Scholar 

  • Koski M, Schmidt K, Engström-Öst J, Viitasalo M, Jónasdóttir S, Repka S et al (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol Oceanogr 47:878–885

    Article  Google Scholar 

  • Kozlowsky-Suzuki B, Karjalainen M, Lehtiniemi M, Engström-Öst J, Koski M, Carlsson P (2003) Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytemora affinis in the presence of the toxic cyanobacterium Nodularia spumigena. Mar Ecol Prog Ser 249:237–249. doi:10.3354/meps249237

    Article  CAS  Google Scholar 

  • Laamanen MJ, Gugger MF, Lehtimäki JM, Haukka K, Sivonen K (2001) Diversity of toxic and non-toxic Nodularia isolates (Cyanobacteria) and filaments from the Baltic Sea. Appl Environ Microbiol 67:4638–4647. doi:10.1128/AEM.67.10.4638-4647.2001

    Article  CAS  Google Scholar 

  • Metcalf JS, Beattie KA, Pflughmacher S, Codd GA (2000) Immuno-crossreactivity and toxicity assessment of conjugation products of the cyanobacterial toxin, microcystin-LR. FEMS Microbiol Lett 189:155–158. doi:10.1111/j.1574-6968.2000.tb09222.x

    Article  CAS  Google Scholar 

  • Pääkkönen J-P, Rönkkönen S, Karjalainen M, Viitasalo M (2008) Physiological effects in juvenile three-spined sticklebacks feeding on toxic cyanobacterium Nodularia spumigena-exposed zooplankton. J Fish Biol 72:485–499

    Article  Google Scholar 

  • Peltonen H, Vinni M, Lappalainen A, Pönni J (2004) Spatial feeding patterns of herring (Clupea harengus L.), sprat (Sprattus sprattus L.), and the three-spined stickleback (Gasterosteus aculeatus L.) in the Gulf of Finland, Baltic Sea. ICES J Mar Sci 61:966–971. doi:10.1016/j.icesjms.2004.06.008

    Article  Google Scholar 

  • Peltonen H, Luoto M, Pääkkönen J-P, Karjalainen M, Tuomaala A, Pönni J et al (2007) Pelagic fish abundance in relation to regional environmental variations in the Gulf of Finland, Northern Baltic Sea. ICES J Mar Sci 64:487–495. doi:10.1093/icesjms/fsl044

    Article  Google Scholar 

  • Poutanen EL, Nikkilä K (2001) Carotenoid pigments as tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea. Ambio 30:179–183. doi:10.1639/0044-7447(2001)030[0179:CPATOC]2.0.CO;2

    Article  CAS  Google Scholar 

  • Raid T, Lankov A (1995) Recent changes in the growth and feeding of Baltic herring and sprat in the northeastern Baltic Sea. Proc Est Acad Sci Ecol 5:38–55

    Google Scholar 

  • Rajaniemi P, Hrouzek P, Kaštovská K, Willame R, Rautala A, Hoffmann L et al (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55:11–26. doi:10.1099/ijs.0.63276-0

    Article  CAS  Google Scholar 

  • Sipiä VO, Kankaanpää H, Flinkman J, Lahti K, Meriluoto JAO (2001a) Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichtys flesus) and mussels (Mytilus edulis) from the northern Baltic Sea. Environ Toxicol 16:330–336. doi:10.1002/tox.1040

    Article  Google Scholar 

  • Sipiä V, Kankaanpää H, Lahti K, Carmichael WW, Meriluoto J (2001b) Detection of nodularin in flounders and cod from the Baltic Sea. Environ Toxicol 16:121–126. doi:10.1002/tox.1015

    Article  Google Scholar 

  • Sipiä VO, Kankaanpää HT, Pflugmacher S, Flinkman J, Furey A, James KJ (2002a) Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the northern Baltic Sea. Ecotoxicol Environ Saf 53:305–311. doi:10.1006/eesa.2002.2222

    Article  Google Scholar 

  • Sipiä VO, Lahti K, Kankaanpää HT, Vuorinen PJ, Meriluoto JAO (2002b) Screening for cyanobacterial hepatotoxins in herring and salmon from the Baltic Sea. Aquat Ecosyst Health Manage 5:451–456. doi:10.1080/14634980290001959

    Article  Google Scholar 

  • Sipiä VO, Sjövall O, Valtonen T, Barnaby DL, Codd GA, Metcalf JS et al (2006) Analysis of nodularin-R in eider (Somateria mollissima), roach (Rutilus rutilus L.), and flounder (Platichtys flesus L.) liver and muscle samples from the western Gulf of Finland, northern Baltic Sea. Environ Toxicol Chem 25:2834–2839. doi:10.1897/06-185R.1

    Article  Google Scholar 

  • Sipiä V, Kankaanpää H, Peltonen H, Vinni M, Meriluoto J (2007) Transfer of nodularin to three-spined stickleback (Gasterosteus aculeatus L.), herring, (Clupea harengus L.), and salmon (Salmo salar L.) in the northern Baltic Sea. Ecotoxicol Environ Saf 66:421–425. doi:10.1016/j.ecoenv.2006.02.006

    Article  Google Scholar 

  • Sivonen K, Kononen K, Carmichael WW, Dahlem AM, Rinehart K, Kiviranta J et al (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and the structure of the toxin. Appl Environ Microbiol 55:1990–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitt Int Verein Theor Angew Limnol 29:117–126

    Google Scholar 

  • Williams DE, Dawe S, Kent M, Andersen R, Graig M, Holmes C (1997) Bioaccumulation and clearance of microcystins from salt water mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues. Toxicon 35:1617–1627. doi:10.1016/S0041-0101(97)00039-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Laura Helenius, Eveliina Lindén, Satu Viitasalo, and the whole crew onboard R/V Aranda during TROFIA04 cruise are warmly acknowledged for their help in sample collection. Kaarina Sivonen and Mika Vinni are thanked for all their help and discussions during the manuscript preparation. Two anonymous referees gave valuable comments on the manuscript. This study was financed by the Academy of Finland (project numbers 202437 and 205048), Walter and Andrée de Nottbeck Foundation, and Maj and Tor Nessling Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miina Karjalainen.

Additional information

Communicated by M. Kühl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karjalainen, M., Pääkkönen, JP., Peltonen, H. et al. Nodularin concentrations in Baltic Sea zooplankton and fish during a cyanobacterial bloom. Mar Biol 155, 483–491 (2008). https://doi.org/10.1007/s00227-008-1046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-1046-4

Keywords

Navigation