Skip to main content
Log in

Structural and functional heterogeneity of hemocyanin: intra- and inter-specific comparison in four species of portunid crabs (Crustacea: Portunidae)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This work is focused on hemocyanin (Hc) heterogeneity at population level and on the biochemical characterization of the different subunit patterns. Two different approaches have been used: we have characterized Hc subunit composition to describe the subunit polymorphism. Then, we have measured the Hc oxygen-binding affinity to disclose the physiological implications of such heterogeneity. In order to evaluate the intra- and inter-specific variability, different populations of Liocarcinus depurator, Liocarcinus marmoreus, Liocarcinus holsatus, Necora puber (Crustacea: Portunidae), from British Isles and Adriatic Sea, have been sampled. Results indicate that Hc polymorphism normally occurs at both intra- and inter-specific levels and involves the protein subunit type. These evidences extend to the portunid Hc the concept of molecular heterogeneity within species that have been previously reported for other decapod and amphipod crustaceans. Besides, the results support the view that subunit composition of crustacean Hcs is almost species-specific, but also that closely related species share a common pattern. Furthermore, this heterogeneity corresponds to different stability of the native oligomers quaternary structure and different oxygen affinity. The results are discussed in relation with the environmental regimes that characterize the different sampling areas. In addition to Hc, the hemolymph collected in specimens from different sampling areas contained also a non-respiratory pseudo-Hc. This paper reports for the first time the occurrence of pseudo-Hc at the level of population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ballweber P, Markl J, Burmester T (2002) Complete hemocyanin subunit sequences of the hunting spider Cupiennius salei: recent hemocyanin remodeling in entelegyne spiders. J Biol Chem 277:14451–14457

    Article  CAS  Google Scholar 

  • Bellelli A, Giardina G, Corda M, Pellegrini MG, Cau A, Condò SG, Brunori M (1988) Sexual and seasonal variability of lobster hemocyanin. Comp Biochem Physiol A 91:445–449

    Article  Google Scholar 

  • Brown AC, Terwilliger NB (1998) Ontogeny of hemocyanin function in the dungeness crab Cancer magister: hemolymph modulation of hemocyanin oxygen-binding. J Exp Biol 201:819–826

    CAS  PubMed  Google Scholar 

  • Burmester T (1999) Identification, molecular cloning and phylogenetic analysis of a non-respiratory pseudo-hemocyanin of Homarus americanus. J Biol Chem 274:13217–13222

    Article  CAS  Google Scholar 

  • Burmester T (2001) Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol 18:184–195

    Article  CAS  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B 172:95–107

    Article  CAS  Google Scholar 

  • Burmester T (2004) Evolutionary history and diversity of arthropod hemocyanins. Micron 35:121–122

    Article  CAS  Google Scholar 

  • Callicott KA, Mangum CP (1993) Phenotypic variation and lability of the subunit composition of the hemocyanin of Uca pugilator. J Exp Mar Biol Ecol 165:143–159

    Article  CAS  Google Scholar 

  • Dainese E, Di Muro P, Beltramini M, Salvato B, Decker H (1998) Subunits composition and allosteric control in Carcinus aestuarii hemocyanin. Eur J Biochem 256:350–358

    Article  CAS  Google Scholar 

  • Decker H, Föll R (2000) Temperature adaptation influences the aggregation state of hemocyanin from Astacus leptodactylus. Comp Biochem Physiol A 127:147–154

    Article  CAS  Google Scholar 

  • Decker H, Terwilliger NB (2000) Cops and robbers: putative evolution of copper oxygen-binding proteins. J Exp Biol 203:1777–1782

    CAS  PubMed  Google Scholar 

  • Durstewitz G, Terwilliger NB (1997) Developmental changes in hemocyanin expression in the Dungeness crab, Cancer magister. J Biol Chem 272:4347–4350

    Article  CAS  Google Scholar 

  • Ellerton HD, Ellerton NF, Robinson HA (1983) Hemocyanin—a current perspective. Prog Biophys Mol Biol 41:143–248

    Article  CAS  Google Scholar 

  • Fling SP, Gregerson DS (1986) Peptide and protein molecular weight determination by electrophoresis using a high-molarity Tris buffer system without urea. Anal Biochem 155:83–88

    Article  CAS  Google Scholar 

  • Froglia C, Manning RB (2006) Marine decapod and Stomatopod Crustacea from Sicily and surrounding seas. Quad Ist Ric Pesca Marittima, Ancona (in press)

  • Hodgson E, Spicer JI (2001) Subunit compositions of crustacean haemocyanins are species-specific: evidence from non-decapod species. Comp Biochem Physiol 128A:873–888

    Article  CAS  Google Scholar 

  • van Holde KE, Miller KI, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276:15563–15566

    Article  Google Scholar 

  • Immesberger I, Burmester T (2004) Phenoloxidase-like proteins of the tunicate Ciona intestinalis and the origin of the arthropod hemocyanin superfamily. J Comp Physiol B 174:169–180

    Article  CAS  Google Scholar 

  • Ingle RW (1996) Shallow-water crabs. In: Barnes RSK, Crothers JH (eds) Synopses of the British fauna (new series). Linnean Society, London, p 243

    Google Scholar 

  • Jaenicke E, Decker H (2004) Functional changes in the family of type 3 copper proteins during evolution. Chembiochem 5:163–169

    Article  CAS  Google Scholar 

  • Kusche K, Burmester T (2001) Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573

    Article  CAS  Google Scholar 

  • Mangum CP (1990) Inducible O2 carriers in the crustaceans. In: Truchot JP, Lalou B (eds) Animal nutrition and transport processes. 2. Transport, respiration and excretion: comparative and environmental aspects. Karger, Basel, Switzerland, pp 92–103

    Google Scholar 

  • Mangum CP (1993) Structural and functional polymorphism of the haemocyanin O2 transport system of the sand fiddler crab Uca pugilator. J Exp Mar Biol Ecol 165:133–141

    Article  CAS  Google Scholar 

  • Mangum CP (1994) Subunit composition of hemocyanin of Callinectes sapidus: phenotypes from naturally hypoxic waters and isolated oligomers. Comp Biochem Physiol B 108:537–541

    Article  CAS  Google Scholar 

  • Mangum CP (1996) Subunit composition of polymorphic hemocyanin in the decapod crustaceans: differences between sibling species. Physiol Zool 69:568–585

    Article  CAS  Google Scholar 

  • Mangum CP, Greaves J (1996) Hemocyanins of the genus Uca: structural polymorphisms and native oligomers. J Exp Mar Biol Ecol 199:1–15

    Article  CAS  Google Scholar 

  • Mangum CP, McKenney AL (1996) Subunit composition of the crustacean hemocyanins: divergence in incipient speciation. Biol Bull 191:33–41

    Article  CAS  Google Scholar 

  • Mangum CP, Rainer JS (1988) The relationship between subunit composition and oxygen binding of blue crab hemocyanin. Biol Bull 174:77–82

    Article  CAS  Google Scholar 

  • Mangum CP, Greaves J, Rainer JS (1991) Oligomer composition and oxygen binding of the blue crab Callinectes sapidus. Biol Bull 181:453–458

    Article  CAS  Google Scholar 

  • Mantovani M, Scali V, Froglia C (1992) Allozymic characterization and phyletic relationships among four species of the genus Liocarcinus STIPSON 1871 (Crustacea Decapoda). Zool Anz 229:237–247

    Google Scholar 

  • Markl J (1986) Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from artropods. Biol Bull 171:90–115

    Article  CAS  Google Scholar 

  • Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. In: Mangum CP (ed) Blood and tissue oxygen carriers, Adv Comp Environ Physiol 13. Springer, Berlin Heidelberg New York, pp 325–376

    Chapter  Google Scholar 

  • Markl J, Hofer A, Bauer G, Markl A, Kempter B, Brenzinger M, Linzen B (1979) Subunit heterogeneity in arthropod hemocyanin: II. Crustacea. J Comp Physiol 133:167–175

    Article  CAS  Google Scholar 

  • Molon A, Di Muro P, Bubacco L, Vasilyev V, Salvato B, Beltramini M, Conze W, Hellmann N, Decker H (2000) Molecular heterogeneity of the hemocyanin isolated from the king crab Paralithodes camtschaticae. Eur J Biochem 267:7046–7057

    Article  CAS  Google Scholar 

  • Passamonti M, Mantovani M, Scali V, Froglia C (1996/1997) Genetic differentiation of European species of Liocarcinus (Crustacea: Portunidae): a gene–enzyme study. Zool Anz 235:157–164

    Google Scholar 

  • Rainer J, Mangum CP, Godette G (1985) Subunit heterogeneity of the blue crab (Callinectes sapidus) hemocyanin along a salinity gradient. Am Zool 25:47A

    Google Scholar 

  • Reese JE, Mangum CP (1994) Subunit composition and O2 binding of the crustacean hemocyanins: interspecific relationships. Biol Bull 187:385–397

    Article  CAS  Google Scholar 

  • Schmitt J (2002) The influence of vertical zonation: differences in hemocyanin structure and function between two crab congeners. M.S. thesis, University of Oregon

  • Šimunović A (1999) Quantitative and qualitative investigations of the benthic communities in the areas of mobile bottoms of the Adriatic Sea. Acta Adriatica 38:77–197

    Google Scholar 

  • Spicer JI, Baden SP (2001) Environmental hypoxia and haemocyanin between-individual variability in Norway lobsters Nephrops norvegicus (L.). Mar Biol 139:727–734

    Article  Google Scholar 

  • Spicer JI, Hodgson E (2003a) Between-population variation in haemocyanin subunit composition of the beachflea Orchestia gammarellus (Crustacea: Amphipoda). J Mar Biol Assoc UK 83:945–947

    Article  Google Scholar 

  • Spicer JI, Hodgson E (2003b) Structural basis for salinity-induced alteration in oxygen binding by haemocyanin from the estuarine amphipod Chaetogammarus marinus (L.). Physiol Biochem Zool 76:843–849

    Article  CAS  Google Scholar 

  • Sullivan B, Bonaventura J, Bonaventura C (1974) Functional differences in the multiple hemocyanins of the horseshoe crab, Limulus polyphemus L. Proc Natl Acad Sci USA 71:2558–2562

    Article  CAS  Google Scholar 

  • Terwilliger NB (1982) Effect of subunit composition on the quaternary structure of isopod (Ligia pallasii) hemocyanin. Biochemistry 21:2579–2586

    Article  CAS  Google Scholar 

  • Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201:1085–1098

    CAS  PubMed  Google Scholar 

  • Terwilliger NB, Dumler K (2001) Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition. J Exp Biol 204:1013–1020

    CAS  PubMed  Google Scholar 

  • Terwilliger NB, Terwilliger RC, Applestein M, Bonaventura C, Bonaventura J (1979) Subunit structure and oxygen binding by hemocyanin of the isopod Ligia exotica. Biochemistry 18:102–108

    Article  CAS  Google Scholar 

  • Terwilliger NB, Dangott L, Ryan M (1999) Cryptocyanin, a crustacean molting protein: evolutionary link with arthropod hemocyanins and insect hexamerins. Proc Natl Acad Sci USA 96:2013–2018

    Article  CAS  Google Scholar 

  • Trentini M, Corni MG, Froglia C (1989) The Chromosomes of Liocarcinus vernalis (Risso, 1916) and Liocarcinus depurator (L., 1758) (Decapoda, Brachiura, Portunidae). Biol Zent Bl 108:163–166

    Google Scholar 

  • Trentini M, Corni MG, Froglia C (1992) The chromosomes of Carcinus mediterraneus Czerniavsky, 1884, Liocarcinus maculatus (Risso, 1827) and Necora puber (L., 1767) (Decapoda, Brachyura, Portunidae). Zool Anz 228:39–44

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof T. Burmester (University of Hamburg) for his suggestions and criticism, Dr O. Marin (University of Padova) for the availability of sequencing facilities. Prof M.J. Kaiser (School of Ocean Sciences, University of Wales, head of the CREAM group) and Dr R. Ormond (University Marine Biological Station of Millport) for providing all the facilities for sampling and Dr M. Bergmann and Dr J. Hall-Spencer for their collaboration in arranging field work. Furthermore, the scientific staff of the CREAM group (Coastal Research Ecology And Management Group), the crews of R/V Prince Madog and Aora and T. Andersen, A. Candeias, E. Chatzinikolaou, C. Saurel, P. Leontarakis, F. Van Gent, fully collaborated during sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Beltramini.

Additional information

Communicated by R. Cattaneo-Vietti, Genova.

Declaration: All the experiments comply with the current laws of Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giomi, F., Raicevich, S., Ferrarese, A. et al. Structural and functional heterogeneity of hemocyanin: intra- and inter-specific comparison in four species of portunid crabs (Crustacea: Portunidae). Mar Biol 151, 1237–1247 (2007). https://doi.org/10.1007/s00227-006-0537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0537-4

Keywords

Navigation