Skip to main content
Log in

The Lance Insertion Retardation meter (LIRmeter): an instrument for in situ determination of sea floor properties—technical description and performance evaluation

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Within this paper we present the Lance Insertion Retardation meter (LIRmeter) as an instrument to determine the strength of marine sediments by a measurement of the deceleration of a probe during penetration into the seafloor. The instrument has been designed for the penetration of the upper 4 m of marine sediments and is therefore suitable for site investigation applications such as cable route surveys. The LIRmeter can be easily deployed from a floating platform in water depths of up to 4,500 m. The system is suitable for long lasting missions (more than 12 h) with pogo-style measurements due to a rugged design and a special selection of sensors and electronics. The LIRmeter provides a custom data acquisition software and a web interface for acquisition setup, data download and system administration. An adaptation of the instrument to specific problems (i.e. extremely soft sediments) is possible due to interchangeable tips and adjustable weights of the lance. The specifically developed user interface and the rugged design make the instrument very easy to handle and to maintain. The sensors and the data acquisition were tested in the laboratory as well as in the field. Field measurements took place in the North Sea, where numerous measurements were performed. This paper gives an extensive description of the design of the LIRmeter (mechanics, electronics and data acquisition) supplemented by a description of data analysis and results of field- and laboratory-tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akal T, Stoll R (1995) An expendable penetrometer for rapid assessment of seafloor parameters. In: OCEANS’95. MTS/IEEE. Challenges of our changing global environment. Conference proceedings, pp 1822–1826. doi:10.1109/OCEANS.1995.528858

  • American Society for Testing and Materials (2000) D4648: standard test method for laboratory miniature vane shear test for saturated fine-grained clayey soils

  • Analog Devices (2010a) ADXL203: precision ±1.7 g dual-axis iMEMS accelerometer. Online datasheet, http://www.analog.com/static/imported-files/data_sheets/ADXL103_203.pdf. Accessed 24 Feb 2012

  • Analog Devices (2010b) ADXL325: small, low power, 3-axis ±5 g accelerometer. Online datasheet, http://www.analog.com/static/imported-files/data_sheets/ADXL325.pdf. Accessed 24 Feb 2012

  • Analog Devices (2010c) ADXL335: small, low power, 3-axis ± 3g accelerometer. Online datasheet, http://www.analog.com/static/imported-files/data_sheets/ADXL335.pdf. Accessed 24 Feb 2012

  • Applied Geomechanics (2000) User’s manual series 755, 756 and 757 miniature tilt sensors

  • Beard R (1981) A penetrometer for deep ocean seafloor exploration. In: OCEANS 81, pp 668–673. doi:10.1109/OCEANS.1981.1151586

  • Beliveau A, Spencer G, Thomas K, Roberson S (1999) Evaluation of MEMS capacitive accelerometers. IEEE Des Test Comput 16(4):48–56. doi:10.1109/54.808209

    Article  Google Scholar 

  • Bhattacharya S, Krishna AM, Lombardi D, Crewe A, Alexander N (2012) Economic MEMS based 3-axis water proof accelerometer for dynamic geo-engineering applications. Soil Dyn Earthq Eng 36(0):111–118. doi:10.1016/j.soildyn.2011.12.001

    Article  Google Scholar 

  • BIPM (2006) The international system of units (SI), vol 8. Bureau International des Poids et Mesures, Organisation Intergouvernementale de la Convention du Mètre

  • Caflisch R (1998) Monte carlo and quasi-monte carlo methods. Acta Numer 7:1–49. doi:10.1017/S0962492900002804

    Article  Google Scholar 

  • Chari T, Smith W, Chaudhuri S (1981) Development of the free-fall penetrometer. In: OCEANS 81, vol 13, pp 678–682. doi:10.1109/OCEANS.1981.1151560

  • Chu P, Fan C (2007) Mine-impact burial model (IMPACT35) verification and improvement using sediment bearing factor method. IEEE J Ocean Eng 32(1):34–48. doi:10.1109/JOE.2007.890942

    Article  Google Scholar 

  • Chung S, Randolph M (2004) Penetration resistance in soft clay for different shaped penetrometers. In: Proceedings of 2nd international conference on site characterisation, vol 1, pp 671–678

  • Das BM (2001) Principles of geotechnical engineering, 5th edn. Thomson Press, Toronto

  • Dayal U, Allen J (1973) Instrumented impact cone penetrometer. Can Geotech J 10(3):397–409

    Article  Google Scholar 

  • Dayal U, Allen JH (1975) The effect of penetration rate on the strength of remoulded clay and sand samples. Can Geotech J 12:336–348

    Article  Google Scholar 

  • de Lange M (2011) Conducting site surveys for offshore wind farms. Sea Technol 52(9):25–29

    Google Scholar 

  • DiamondSystems (2011) Helios single board computer. Online manual, http://www.diamondsystems.com/files/binaries/HeliosManual.pdf. Accessed 24 Feb 2012

  • Duncan C (1969) Plowing cables under the sea. IEEE Trans Commun Technol 17(1):74–82

    Article  Google Scholar 

  • Fabian M, Kaul N, Gmeinder T (2008) The Bremen lance insertion retardation (LIR) meter to assess sea floor stability. Sea Technol 49(10):10–13

    Google Scholar 

  • Figge K (1981) Karte zur Sedimentverteilung im Bereich der Deutschen Bucht im Maβstab 1:250000. Deutsches Hydrographisches Institut, Hamburg

    Google Scholar 

  • Ghodssi R, Lin P (2011) MEMS materials and processes handbook. Springer, New York

    Book  Google Scholar 

  • Gogoi B, Mladenovic D (2002) Integration technology for MEMS automotive sensors. In: IECON 02, IEEE 2002 28th annual conference of the Industrial Electronics Society vol 4, pp 2712–2717

  • Hansbo S (1957) A new approach to the determination of the shear strength of clay by the fall-cone test. In: Swedish Geotech Institute Proceedings, vol 14, pp 1–48

  • Hollocher D, Zhang X, Sparks A et al (2009) A very low cost, 3-axis, MEMS accelerometer for consumer applications. In: Sensors, 2009 IEEE, pp 953–957. doi:10.1109/ICSENS.2009.5398189

  • Hyndman RD, Davis EE, Wright JA (1979) The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity. Mar Geophys Res 4:181–205. doi:10.1007/BF00286404

    Article  Google Scholar 

  • Ingram C (1982) Expendable penetrometer for seafloor classification. Geo Mar Lett 2(3):239–241. doi:10.1007/BF02462771

    Article  Google Scholar 

  • Lunne T, Robertson P, Powell J (1997) Cone penetration testing in geotechnical practice. Taylor & Francis Group, London

    Google Scholar 

  • Maxim Integrated Products (1999) Maxim 8th-order, lowpass, butterworth, switched-capacitor filter. Online datasheet, http://datasheets.maxim-ic.com/en/ds/MAX7480.pdf. Accessed 24 Feb 2012

  • Mulukutla G, Huff L, Melton J et al (2011) Sediment identification using free fall penetrometer acceleration-time histories. Mar Geophys Res 32(3):1–15. doi:10.1007/s11001-011-9116-2

    Google Scholar 

  • Osler J, Furlong A, Christian H (2006) A sediment probe for the rapid assessment of seabed characteristics. In: Caiti A, Chapman NR, Hermand JP, Jesus SM (eds) Acoustic sensing techniques for the shallow water environment. Springer, Dordrecht, pp 171–181

    Chapter  Google Scholar 

  • Parker WR, Sills GC (1990) Observation of corer penetration and sample entry during gravity coring. Mar Geophys Res 12(1):101–107. doi:10.1007/BF00310566

    Article  Google Scholar 

  • Raie MS, Tassoulas JL (2009) Installation of torpedo anchors: numerical modeling. J Geotech Geoenviron 135(12):1805–1813. doi:10.1061/(ASCE)GT.1943-5606.0000159

    Article  Google Scholar 

  • Richards A, McDonald V, Olson R, Keller G (1972) In-place measurement of deep sea soil shear strength. In: D'Appolonia E (ed) Underwater soil sampling, testing and construction control, ATSM STP 501. American Society for Testing and Materials, Philadelphia, pp 55–68

  • Spooner IS, Williams P, Martin K (2004) Construction and use of an inexpensive, lightweight free-fall penetrometer: applications to paleolimnological research. J Paleolimnol 32:305–310. doi:10.1023/B:JOPL.0000042997.78454.e2

    Article  Google Scholar 

  • Stark N, Wever T (2009) Unraveling subtle details of expendable bottom penetrometer (XBP) deceleration profiles. Geo Mar Lett 29(1):39–45. doi:10.1007/s00367-008-0119-1

    Article  Google Scholar 

  • Stark N, Kopf A, Hanff H, Stegmann S, Wilkens R (2009) Geotechnical investigations of sandy seafloors using dynamic penetrometers. In: OCEANS 2009, MTS/IEEE Biloxi—marine technology for our future: global and local challenges

  • Stark N, Hanff H, Svenson C et al (2011) Coupled penetrometer, MBES and ADCP assessments of tidal variations in surface sediment layer characteristics along active subaqueous dunes, danish wadden sea. Geo Mar Lett 31(4):249–258. doi:10.1007/s00367-011-0230-6

    Article  Google Scholar 

  • Stegmann S, Kopf A (2007) Marine deep-water free-fall CPT measurements for landslide characterisation off crete, greece (eastern mediterranean sea)—part I: a new 4000 m cone penetrometer. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences, 3rd international symposium. Springer, Dordrecht, pp 171–177

    Chapter  Google Scholar 

  • Stoll R, Akal T (1999) XBP—tool for rapid assessment of seabed sediment properties. Sea Technol 40:47–51

    Google Scholar 

  • Stoll D, Sun YF, Bitte I (2007) Seafloor properties from penetrometer tests. IEEE J Ocean Eng 32(1):57–63. doi:10.1109/JOE.2007.890943

    Article  Google Scholar 

  • Terzaghi K (1943) Theoretical soil mechanics. John Chapman and Hall Ltd, London

    Book  Google Scholar 

  • Villinger H, Grigel J, Heesemann B (1999) Acceleration-monitored coring revisited. Geo Mar Lett 19:275–281. doi:10.1007/s003670050119

    Article  Google Scholar 

  • Weaver PPE, Schultheiss PJ (1983) Detection of repenetration and sediment disturbance in open-barrel gravity cores. J Sediment Res 53(2):649–654

    Google Scholar 

Download references

Acknowledgments

This project is supported with funding from the program “Angewandte Umweltforschung” of the Bremen State (Senator für Umwelt, Verkehr, Bau und Europa) in the frame of the “European Fund for regional development 2007-2013”. European Union: investments in your future. European funding for regional development. The cooperation with T. Wever (FWG), as well as Captain and Crew of Fs Planet (WTD 71) was a big opportunity for us and is very much appreciated. Further we would like to thank Fielax Gesellschaft für wissenschaftliche Datenverarbeitung mbH for the good and inspiring cooperation during the project. The work for and dedication to this project by our engineer B. Heesemann and by our student A. Schwab is greatly appreciated. The preceding experiments by M. Fabian and T. Gmeinder were very helpful and contributed to the successful development of the LIRmeter. Also support from M. Naumann (LBEG), C. Thürnagel (BGR) and W-U. Laurer (BSH) from the project Geopotenzial Deutsche Nordsee is appreciated. Furthermore we would like to thank the two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Stephan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephan, S., Kaul, N. & Villinger, H. The Lance Insertion Retardation meter (LIRmeter): an instrument for in situ determination of sea floor properties—technical description and performance evaluation. Mar Geophys Res 33, 209–221 (2012). https://doi.org/10.1007/s11001-012-9156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-012-9156-2

Keywords

Navigation