Skip to main content

Advertisement

Log in

Sinking fluxes of particulate U-Th radionuclides in the East Sea (Sea of Japan)

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A record of radionuclide fluxes at a deep marginal sea of the Northwest Pacific Ocean (39°40′N 132°24′ E, Japan Basin, East Sea/Sea of Japan) was obtained from analysis of a 1-year continuous collection of sediment-trap samples. The trap was placed at a depth of 2800 m, 500 m above the sea floor, and the samples were recovered at the end of one year. Concentrations of 238U, 234U, 232Th, 230Th and 228Th were measured in the trapped material. All of the radionuclide fluxes showed seasonal variations that were in phase with the variations in total particle flux, which were shown in earlier work to be closely tied to the primary production in the surface water. The formation of authigenic 238U appears to be less than in other open ocean regimes. The residence time of particulate thorium isotopes were of the order of a year, resulting in an average settling rate of a meter per day. Comparison of the measured 230Thex flux with that of the theoretical production in the overlying water column yielded about 40% surplus of 230Th, indicating that lateral advection contributes 230Th to this sampling site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon, M. P., C. A. Huh, A. P. Fleer and W. G. Deuser (1985): Seasonality in the flux of natural radionuclides and plutonium in the deep Sargosso Sea. Deep-Sea Res., 32, 273–286.

    Article  Google Scholar 

  • Baskaran, M. (2001): Scavenging of thorium isotopes in the Arctic regions: Implications for the fate of particle-reactive pollutants. Mar. Poll. Bull., 42, 16–22.

    Article  Google Scholar 

  • Baskaran, M., P. W. Swarzenski and D. Porecelli (2003): Role of colloidal material in the removal of 234Th in the Canada Basin of the Arctic Ocean. Deep-Sea Res. I, 50, 1353–1373.

    Article  Google Scholar 

  • Browne, E. and R. B. Firestone (1986): Table of Radioactive Isotopes. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Carpenter, R., M. L. Peterson, J. T. Bennet and B. L. K. Somayajuly (1984): Mixing and cycling or uranium, thorium and 210Pb in Puget Sound sediments. Geochim. Cosmochim. Acta, 48, 1949–1963.

    Article  Google Scholar 

  • Chen, J. H., R. L. Edwards and G. J. Wasserburg (1986): 238U, 234U and 232Th in seawater. Earth Planet. Sci. Lett., 80, 241–251.

    Article  Google Scholar 

  • Cooper, L. W., G. H. Hong, T. M. Beasley and J. M. Grebmeier (2001): Iodine-129 concentrations in marginal seas of the North Pacific and Pacific-influenced waters of the Arctic Ocean. Mar. Poll. Bull., 42, 1347–1356.

    Article  Google Scholar 

  • Dunk, R. M., R. A. Mills and W. J. Jenkins (2002): A reevaluation of the oceanic uranium budget for the Holocene. Chem. Geol., 190, 45–67.

    Article  Google Scholar 

  • Fisher, N. S., J. L. Teyssie, S. Krishnaswami and M. Baskaran (1987): Accumulation of Th, Pb, U and Ra in marine phytoplankton and its geochemical significance. Limonol. Oceanogr., 32, 131–142.

    Article  Google Scholar 

  • Fleisher, M. Q. and R. F. Anderson (2003): Assessing the collection efficiency of Ross Sea sediment traps using 230Th and 231Pa. Deep-Sea Res. II, 50, 693–712.

    Article  Google Scholar 

  • Goldberg, E. L., M. A. Grachev, V. A. Bobrov, A. V. Bessergenev, B. V. Zolotaryov and Ye. V. Likhoshway (1998): Do diatom algae frustules accumulate uranium? Nuclear Instru. Meth. Phys. Res. A, 405, 584–589.

    Article  Google Scholar 

  • Gu, Z. Y., D. Lal, T. S. Liu, Z. T. Guo, J. Southon and M. W. Caffee (1997): Weathering histories of Chinese loess deposits based on uranium and thorium series nuclides and cosmogenic 10Be. Geochim. Cosmochim. Acta, 24, 5221–5231.

    Article  Google Scholar 

  • Henderson, G. M. (2002): New oceanic proxies for paleoclimate. Earth Planet. Sci. Lett., 203, 1–13.

    Article  Google Scholar 

  • Hirose, K. and Y. Sugimura (1987): Thorium isotopes in the surface air of the western North Pacific Ocean. J. Environ. Radioact., 5, 459–475.

    Article  Google Scholar 

  • Hirose, K., H. Amano, M. S. Baxter, E. Chaykovskaya, V. B. Chumichev, G. H. Hong, K. Isogai, C. K. Kim, S. H. Kim, T. Miyao, T. Morimoto, A. Nikitin, K. Oda, H. B. L. Pettersson, P. P. Povinec, Y. Seto, A. Tkalin, O. Togawa and N. K. Veletova (1999): Anthropogenic radionuclides in seawater in the East/Japan Sea: Results of the first stage Japanese-Korean-Russian expedition. J. Environ. Radioact., 43, 1–13.

    Article  Google Scholar 

  • Hirose, K., Y. Igarashi and M. Aoyama (2007): Recent trends of plutonium fallout in Japan: Comparison with natural lithogenic radionuclides, thorium isotopes. J. Radioanal. Nucl. Chem., 273, 115–118.

    Article  Google Scholar 

  • Hong, G. H. and C.-T. A. Chen (2002): Aragonite pteropd flux to the interior of the East Sea (Sea of Japan). Terri. Atmos. Ocean. Sci., 13, 205–210.

    Google Scholar 

  • Hong, G. H., S. M. Choe, M. S. Suk, J. Y. Na, I. C. Shin, C. S. Chung and S. H. Kim (1997a): Annual biogenic particle fluxes to the interior of the East/Japan Sea, a large marginal sea of the Northwest Pacific. p. 300–321. In Biogeochemical Processes in the North Pacific, ed. by S. Tsunogai, Japan Marine Science Foundation, Tokyo.

    Google Scholar 

  • Hong, G. H., S. H. Kim, C. S. Chung, D. J. Kang, D. H. Shin, H. J. Lee and S. J. Han (1997b): 210Pb-derived sediment accumulation rates in the southwestern East Sea (Sea of Japan). Geo-Mar. Lett., 17, 126–132.

    Article  Google Scholar 

  • Huh, C. A., T. L. Ku, S. Luo, M. R. Landry and P. M. Williams (1993): Fluxes of Th isotopes in the Santa Monica Basin, offshore California. Earth Planet. Sci. Lett., 116, 155–164.

    Article  Google Scholar 

  • Irino, T. and R. Tada (2002): High-resolution reconstruction of variation in Aeolian dust (Kosa) deposition at ODP site 797, the Japan Sea, during the last 200 ka. Global Planet. Change, 35, 143–156.

    Article  Google Scholar 

  • Kim, K., K.-R. Kim, Y.-G. Kim, Y. K. Cho, J. Y. Chung, B. H. Choi, S. K. Byn, G. H. Hong, M. Takematsu, J. H. Yoon, Y. Volkov and M. Danchenkov (1996): New findings from CREAMS observations: Water masses and eddies in the East Sea. J. Korean Soc. Oceanogr., 31, 155–163.

    Google Scholar 

  • Kim, S. H. (1997): A study on the paleo-ocean environment of the East Sea since the late Pleistocene. Ph.D. Thesis. Hanyang University, Seoul, 228 pp.

    Google Scholar 

  • Lao, Y., R. Anderson and W. S. Broecker (1992): Boundary scavenging and deep-sea sediment dating: constraints from excess 230Th and 231Pa. Paleoceanogr., 7, 783–798.

    Article  Google Scholar 

  • Lee, S. H., J. Gaustaud, P. P. Povinec, G. H. Hong, S. H. Kim, C. S. Chung, K. W. Lee and H. B. L. Pettersson (2003): Distribution of plutonium and americium in the marginal seas of the northwest Pacific Ocean. Deep-Sea Res. II, 50, 2727–2750.

    Article  Google Scholar 

  • Masuzawa, T. and M. Koyama (1989a): Compositional change of settling particles with water depth in the Japan Sea. Mar. Chem., 27, 61–78.

    Article  Google Scholar 

  • Masuzawa, T. and M. Koyama (1989b): Settling particles with positive Ce anomalies from the Japan Sea. Geophys. Res. Lett., 16, 503–506.

    Article  Google Scholar 

  • McGee, D., F. Marcantonio and J. Lynch-Stieglitz (2007): Deglacial changes in dust flux in the eastern equatorial Pacific. Earth Planet. Sci. Lett., 257, 215–290.

    Article  Google Scholar 

  • Moon, D.-S., G. H. Hong, Y. I. Kim, M. Baskaran, C. S. Chung, S. H. Kim, H.-J. Lee, S.-H. Lee and P. P. Povinec (2003): Accumulation of anthropogenic and natural radionuclides in bottom sediments of the Northwest Pacific Ocean. Deep-Sea Res. II, 50, 2649–2673.

    Article  Google Scholar 

  • Nozaki, Y. and M. Yamada (1987): Thorium and protactinium isotope distributions in waters of the Japan Sea. Deep-Sea Res., 34, 1417–1430.

    Article  Google Scholar 

  • Nozaki, Y., H.-S. Yang and M. Yamada (1987): Scavenging of thorium in the ocean. J. Geophys. Res., 92, 772–778.

    Article  Google Scholar 

  • Otosaka, S., O. Togawa, M. Baba, E. Karasev, Y. N. Volkvo, N. Omata and S. Noriki (2004): Lithogenic flux in the Japan Sea measured with sediment traps. Mar. Chem., 91, 143–163.

    Article  Google Scholar 

  • Pohl, C., A. Loffler and U. Hennings (2004): A sediment trap flux study for trace metals under seasonal aspects in the stratified Baltic Sea (Gotland Basin; 57°19.20′ N; 20°03.00′ E). Mar. Chem., 84, 143–160.

    Article  Google Scholar 

  • Postlethwaite, C. F., E. J. Rohling, W. J. Jenkins and C. F. Walker (2005): A tracer study of ventilation in the Japan/East Sea. Deep-Sea Res. II, 52, 1684–1704.

    Article  Google Scholar 

  • Pourmand, A., F. Marcantonio and H. Schulz (2004): Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka. Earth Planet. Sci. Lett., 221, 39–54.

    Article  Google Scholar 

  • Roy-Barman, M., C. Jeandel, M. Souhaut, M. R. Van der Loeff, I. Voege, N. Leblond and R. Freydier (2005): The influence of particle composition on thorium scavenging in the NE Atlantic Ocean (POMME experiment). Earth Planet. Sci. Lett., 240, 681–693.

    Article  Google Scholar 

  • Santschi, P. H., J. W. Murray, M. Baskaran, C. R. Benitez-Nelson, L. D. Guo, C. C. Hung, C. Lamborg, S. M. Moran, U. Passow and M. Roy-Barman (2006): Thorium speciation in seawater. Mar. Chem., 100, 250–268.

    Article  Google Scholar 

  • Siddall, M., G. M. Henderson, N. R. Edwards, M. Frand, S. A. Müller, T. F. Stocker and F. Joos (2005): 231Pa/230Th fractionation by ocean transport, biogenic particle flux and particle type. Earth Planet. Sci. Lett., 237, 135–155.

    Article  Google Scholar 

  • Smoak, J. M., W. S. Moore, R. C. Thunell and T. J. Shaw (1999): Comparison of 234Th, 228Th and 210Pb fluxes with fluxes of major sediment components in the Guaymas Basin, Gulf of California. Mar. Chem., 65, 177–194.

    Article  Google Scholar 

  • Taguchi, K., K. Harada and S. Tsunogai (1989): Particulate removal of 230Th and 231Pa in the biologically productive northern North Pacific. Earth Planet. Sci. Lett., 93, 223–232.

    Article  Google Scholar 

  • Taylor, S. R. and S. M. McLennan (1995): The geochemical evolution of the continental crust. Rev. Geophys., 33, 241–265.

    Article  Google Scholar 

  • Trimble, S. M., M. Baskaran and D. Porcelli (2004): Scavenging of thorium isotopes in the Canada Basin of the Artic Ocean. Earth Planet. Sci. Lett., 222, 915–932.

    Article  Google Scholar 

  • Watanabe, Y. W., S. Watanabe and S. Tsunogai (1991): Tritium in the Japan Sea and the renewal time of the Japan Sea Deep Water. Mar. Chem., 34, 97–108.

    Article  Google Scholar 

  • Yu, E. F., R. Francois, M. P. Bacon and A. P. Fleer (2001): Fluxes of 230Th and 231Pa to the deep sea: implications for the interpretation of excess 230Th and 231Pa/230Th profiles in sediments. Earth Planet. Sci. Lett., 191, 219–230.

    Article  Google Scholar 

  • Zheng, Y., R. F. Anderson, A. van Geen and M. Q. Fleisher (2002): Preservation of particulate non-lithogenic uranium in marine sediments. Geochim. Cosmochim. Acta, 66, 3085–3092.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Hoon Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, GH., Baskaran, M., Lee, HK. et al. Sinking fluxes of particulate U-Th radionuclides in the East Sea (Sea of Japan). J Oceanogr 64, 267–276 (2008). https://doi.org/10.1007/s10872-008-0021-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-008-0021-5

Keywords

Navigation