Skip to main content

Advertisement

Log in

Theoretical design of metal-phthalocyanine dye-sensitized solar cells with improved efficiency

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present work carried out a theoretical study of the electronic structures, absorption spectra, and photovoltaic performance of two series of transition metal-phthalocyanine derived from nonperipheral electron-donating substituents, either (2-phenyl) phenoxy(M-PC1) or quinoleinoxy(M-PC2). The DFT and TD-DFT were employed for this study. The effect of modifying the central metal atoms and the substitution on cell performance were investigated in terms of polarizability (α), hyper-polarizability (β), chemical potential (μ), chemical hardness (η), electrophilicity power (ω), FMOs, energy gaps, UV/vis absorption spectra and injected driving force (ΔGinject), light harvesting efficiencies (LHE), total reorganization energy (λtot), open circuit photovoltage (Voc), and life time of the excited state (τ). The results obtained by using these parameters showed that the replacement of (2-phenyl) phenoxy by a proposed substituent such as quinoleinoxy would increase the hyper-polarizability, light harvesting efficiency, and open circuit photovoltage, while on the other hand the reorganization energy and the injection driving force are decreased. Modifying central metal atoms, such as Zn, Cd, Pd, and Pt, exhibited good performance in terms of the driving force of electron injection, charge transfer characteristics, and dye reorganization as compared with the Cu reference dye. The findings provided a useful prediction and perspective for the promising future for high-efficiency dye-sensitized solar cells (DSSCs) with dyes based on phthalocyanine.

Photovoltaic performance of Metallo-phthalocyanine contening (2-phenyl) phenoxy and quinoleinoxy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F (2015) Vegetable-based dye-sensitized solar cells. Chem Soc Rev 44:3244–3294

    Article  CAS  Google Scholar 

  2. Ito S, Nazeeruddin MK, Liska P, Comte P, Charvet R, Pechy P, Jirousek M, Kay A, Zakeeruddin SM, Grätzel M (2006) Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency. Prog Photovolt Res Appl 14:589–601

    Article  CAS  Google Scholar 

  3. Fan K, Peng TY, Chen JN, Zhang XH, Li RJ (2012) Low-cost, quasi-solid-state and TCO-free highly bendable dye-sensitized cells on paper substrate. J Mater Chem 22:16121–16126

    Article  CAS  Google Scholar 

  4. Chen JN, Peng TY, Fan K, Li RJ, Xia JB (2013) Optimization of plastic crystal ionic liquid electrolyte for solid-state dye-sensitized solar cell. Electrochim Acta 94:1–6

    Article  CAS  Google Scholar 

  5. Fan K, Peng TY, Chen JN, Zhang XH, Li RJ (2013) A simple preparation method for quasi-solid-state flexible dye-sensitized solar cells by using sea urchin-like anataseTiO 2 microspheres. J Power Sources 222:38–44

    Article  CAS  Google Scholar 

  6. Yu YJ, Kay KY, Zakeeruddin SM, Gratzel M (2010) Molecular design of metal-free D–π-A substituted sensitizers for dye-sensitized solar cells. Energy Environ Sci 3:1757–1764

    Article  Google Scholar 

  7. Chen BS, Chen K, Hong YH, Liu WH, Li TH, Lai CH, Chou PT, Chi Y, Lee GH (2009) Neutral, panchromatic Ru (II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chem Commun 39:5844–5846

  8. Martin-Gomis L, Fernandez-Lazaro F, Sastre-Santos A (2014) Advances in phthalocyanine-sensitized solar cells (PcSSCs). J Mater Chem A 2:15672–15682

    Article  CAS  Google Scholar 

  9. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–739

    Article  Google Scholar 

  10. Imahori H, Umeyama T, Ito S (2009) Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42:1809–1818

    Article  CAS  Google Scholar 

  11. Gratzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153

    Article  CAS  Google Scholar 

  12. Boissezon R, Muller J, Beaugeard V, Monge S, Robin J-J (2014) Organophosphonates as anchoring agents onto metal oxide-based materials: synthesis and applications. RSC Adv 4:35690–35707

    Article  CAS  Google Scholar 

  13. Victoria M-D, Torre G, Torres T (2010) Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem Commun 46:7090–7108

    Article  Google Scholar 

  14. Ragoussi ME, Ince M, Torres T (2013) Recent advances in phthalocyanine-based sensitizers for dye-sensitized solar cells. Eur J Org Chem 29:6475–6489

    Article  Google Scholar 

  15. Kimura M, Tohata Y, Ikeuchi T, Mori S (2015) Zinc phthalocyanine sensitizer having double carboxylic acid anchoring groups for dye-sensitized solar cells with cobalt (ii/iii)-based redox electrolyte. RSC Adv 5:82292–82295

    Article  CAS  Google Scholar 

  16. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    Article  CAS  Google Scholar 

  17. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Article  CAS  Google Scholar 

  18. Imahori H, Umeyama T, Ito S (2009) Largeπ-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42:1809–1818

    Article  CAS  Google Scholar 

  19. Gratzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851

    Article  Google Scholar 

  20. Garcia-Iglesias M, Cid J, Yum J, Forneli A, Vazquez P, Nazeeruddin MK, Palomares E, Gratzel M, Torres T (2011) Increasing the efficiency of zinc-phthalocyanine based solar cells through modification of the anchoring ligand. Energy Environ Sci 4:189–194

    Article  CAS  Google Scholar 

  21. Mori S, Nagata M, Nakahata Y, Yasuta K, Goto R, Kimura M, Taya M (2010) Enhancement of incident photon-to-current conversion efficiency for phthalocyanine-sensitized solar cells by 3D molecular structuralization. J Am Chem Soc 132:4054–4055

    Article  CAS  Google Scholar 

  22. Martinez-Diaz MV, Ince M, Torres T (2011) Phthalocyanines: colorful macroheterocyclic sensitizers for dye-sensitized solar cells. Monatsh Chem 142:699–707

    Article  CAS  Google Scholar 

  23. Torre GD, Claessens CG, Torres T (2007) Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem Commun 20:2000–2015

    Article  Google Scholar 

  24. Radivojevic I, Bazzan G, Burton-Pye BP, Ithisuphalap K, Saleh R (2012) Zirconium (IV) and hafnium (IV) porphyrin and phthalocyanine complexes as new dyes for solar cell devices. J Phys Chem C 116:15867–15877

    Article  CAS  Google Scholar 

  25. Brumbach MT, Boal AK, Wheeler DR (2009) Metalloporphyrin assemblies on pyridine-functionalized titanium dioxide. Langmuir 25:10685–10690

    Article  CAS  Google Scholar 

  26. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  CAS  Google Scholar 

  27. HuaLuo J, Song Li Q, Na Yang L, Zhu Sun Z, Sheng Li Z (2014) Theoretical design of porphyrazine derivatives as promising sensitizers for dye-sensitized solar cells. RSC Adv 4:20200–20207

    Article  Google Scholar 

  28. Eu S, Katoh T, Umeyama T, Matano Y, Imahori H (2008) Synthesis of sterically hindered phthalocyanines and their applications to dye-sensitized solar cells. Dalton Trans 40:5476–5483

    Article  Google Scholar 

  29. Huang J, Yin Z, Zheng Q (2011) Applications of ZnO in organic and hybrid solar cells. Energy Environ Sci 4:3861–3877

    Article  CAS  Google Scholar 

  30. Xu F, Sun L (2011) Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solarcells. Energy Environ Sci 4:818–841

    Article  CAS  Google Scholar 

  31. Deepak TG, Anjusree GS, Thomas S, Arun TA, Nair SV, Sreekumaran Nair A (2014) A review on materials for light scattering in dye-sensitized solar cells. RSC Adv 4:17615–17638

    Article  CAS  Google Scholar 

  32. Gulbinas V, Chachisvilis M, Valkunas L, Sundstrom V (1996) Excited state dynamics of phthalocyanine films. J Phys Chem 100:2213–2219

    Article  CAS  Google Scholar 

  33. Ikeuchi T, Nomoto H, Masaki N, Griffith MJ, Mori S, Kimura M (2014) Molecular engineering of zinc phthalocyanine sensitizers for efficient dye-sensitized solar cells. Chem Commun 50:1941–1943

    Article  CAS  Google Scholar 

  34. Ali HEA, Altındal A, Altun S, Odabas Z (2016) Highly efficient dye-sensitized solar cells based on metal-free and copper (II) phthalocyanine bearing 2-phenylphenoxy moiety. Dyes Pigments 124:180–187

    Article  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  36. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  38. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:8207–8215

    Article  Google Scholar 

  39. Izmaylov AF, Scuseria G, Frisch MJ (2006) Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. J Chem Phys 125:104103,1–1041103,8

    Google Scholar 

  40. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. J Chem Phys 125:224105–224106

    Article  Google Scholar 

  41. Henderson TM, Izmaylov AF, Scalmani G, Scuseria GE (2009) Can short-range hybrids describe long-range-dependent properties? J Chem Phys 131:44108,1–44108,9

    Article  Google Scholar 

  42. Lijuan Y, Wenye S, Lin L, Yuwen L, Renjie L, Tianyou P, Xingguo L (2014) Effects of benzo-annelation of asymmetric phthalocyanine on the photovoltaic performance of dye-sensitized solar cells. Dalton Trans 43:8421–8430

    Article  Google Scholar 

  43. Dunning Jr TH, Hay PJ (1977) In: Schaefer III HF (ed) Methods of electronic structure theory, vol 2. Plenum, New York

  44. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  45. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  Google Scholar 

  46. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  47. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  48. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  49. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  50. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford (2013)

  52. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27(4):734–740

    Article  CAS  Google Scholar 

  53. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  54. Gunter P (ed) (2000) Nonlinear optical effects and materials, vol 72. Springer, Berlin

    Google Scholar 

  55. Sophy KB, Calaminici P, Pal S (2007) Density functional static dipole polarizability and first-hyperpolarizability calculations of Nan (n = 2, 4, 6, 8) clusters using an approximate CPKS method and its comparison with MP2 calculations. J Chem Theory Comput 3:716–727

    Article  CAS  Google Scholar 

  56. Narayan MR (2012) Review: dye sensitized solar cells based on natural photosensitizers. Renew Sust Energ Rev 16:208–215

    CAS  Google Scholar 

  57. Arkan F, Izadyar M, Nakhaeipour A (2016) The role of the electronic structure and solvent in the dye-sensitized solar cells based on Zn-porphyrins: theoretical study. Energy 114:559–567

    Article  CAS  Google Scholar 

  58. Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Hamidib M, Bouachrine M (2014) Theoretical investigation of new thiazolothiazole-based D-π-a organicdyes for efficient dye-sensitized solar cell. Spectrochim Acta A Mol Biomol Spectrosc 124:646–654

    Article  CAS  Google Scholar 

  59. Sang-aroon W, Saekow S, Amornkitbamrung V (2012) Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J Photochem Photobiol A 236:35–40

    Article  CAS  Google Scholar 

  60. Preat J, Jacquemin D, Michaux C, Perpète EA (2010) Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem Phys 376:56–68

    Article  CAS  Google Scholar 

  61. Balanay MP, Kim DH (2009) Structures and excitation energies of Zn–tetraarylporphyrin analogues: a theoretical study. J Mol Struct THEOCHEM 910:20–26

    Article  CAS  Google Scholar 

  62. Asbury JB, Wang Y-Q, Hao E, Ghosh HN, Lian T (2001) Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res Chem Intermed 27:393–406

    Article  CAS  Google Scholar 

  63. Guo JJ, Menga XF, Niu J, Yin Y, Han MM, Ma XH, Song GS, Zhang F (2016) A novel asymmetric phthalocyanine-based hole transporting material for perovskite solar cells with an open-circuit voltage above 1.0 V. Synth Met 220:462–468

    Article  CAS  Google Scholar 

  64. Sun C, Li Y, Qi D, Li H, Song P (2016) Optical and electrical properties of purpurin and alizarin complexone as sensitizers for dye-sensitized solar cells. J Mater Sci Mater Electron 27(8):8027–8039

    Article  CAS  Google Scholar 

  65. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  66. Nishida JI, Masuko T, Cui Y, Hara K, Shibuya H, Ihara M, Hosoyama T, Goto R, Mori S, Yamashita Y (2010) Molecular design of organic dye toward retardation of charge recombination at semiconductor/dye/electrolyte interface: introduction of twisted π-linker. J Phys Chem C 114:17920–17925

    Article  CAS  Google Scholar 

  67. Chaitanya K, HaiJu X, Mark Heron B (2014) Theoretical study on the light harvesting efficiency of zinc porphyrinsensitizersfor DSSCs. RSC Adv 4:26621–26634

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Harrath.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrath, K., Hussain Talib, S. & Boughdiri, S. Theoretical design of metal-phthalocyanine dye-sensitized solar cells with improved efficiency. J Mol Model 24, 279 (2018). https://doi.org/10.1007/s00894-018-3821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3821-6

Keywords

Navigation