Skip to main content
Log in

Microstructure and cyclic oxidation of a Hf-doped (Ni,Pt)Al coating for single-crystal superalloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A diffusion-barrier-contained Hf-doped (Ni,Pt)Al coating was prepared by firstly composite electroplating and then aluminising. The TEM study of the microstructure showed that Hf serves as a solid solution in (Ni,Pt)Al lattice and forms HfO2 in the Hf-rich zone. This HfO2 is formed in situ during aluminisation under low oxygen pressure. It acts as a diffusion barrier to prevent the inter-diffusion during cyclic oxidation. In comparison with (Ni,Pt)Al coating, the oxide scale on Hf-dope (Ni,Pt)Al is more adherent. Moreover, the surface rumpling extent is much relieved due to slower Al depletion rate and higher creep resistance by Hf addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Duhl DN, Cetel AD (1988) Advanced high strength single crystal superalloy compositions. U.S. Patents 4719080

  2. Gell M, Duhl DN (1986) Development of single crystal superalloy turbine blades. In: Allen SM, Pelloux RM, Widmer RE (eds) Proceedings of the Nicholas J grant symposium on advanced high-temperature alloys: processing and properties. ASM International, Materials Park, OH, pp 41–49

  3. Sato A, Chiu YL, Reed R (2011) Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications. Acta Mater 59:225–240

    Article  CAS  Google Scholar 

  4. Goward GW (1998) Progress in coatings for gas turbine airfoils. Surf Coat Technol 108:73–79

    Article  Google Scholar 

  5. Clarke D, Levi C (2003) Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res 33:383–417

    Article  CAS  Google Scholar 

  6. Ye LY, Chen HF, Liu B, Yang G, Luo HJ, Gao YF (2018) Effect of Pt content on initial TGO formation and available Al reserve of Pt–Al coatings during thermal cycling. Surf Coat Technol 337:82–89

    Article  CAS  Google Scholar 

  7. Chen K, Zhao L, Fu M, Patnaik PC (2018) The effect of platinum on β-NiAl/α-Al2O3 interfacial tensile stress: a combined Ab initio DFT and mechanics-based model study. Oxid Met 90:65–82

    Article  CAS  Google Scholar 

  8. Smola G, Wang W, Jedliński J, Gleeson B, Kowalski K, Bernasik A, Nocun M (2009) Mechanistic aspects of Pt-modified β-NiAl alloy oxidation. Mater High Temp 26:273–280

    Article  CAS  Google Scholar 

  9. Zhou L, Mukherjee S, Huang K, Park YW, Sohn Y (2015) Failure characteristics and mechanisms of EB-PVD TBCs with Pt-modified NiAl bond coats. Mater Sci Eng, A 637:98–106

    Article  CAS  Google Scholar 

  10. Audigie P, Selezneff S, Rouaix Vande Put A, Estournes C, Hamadi S, Monceau D (2014) Cyclic oxidation behavior of TBC systems with a Pt-rich gamma-Ni plus γ’-Ni3Al bond-coating made by SPS. Oxid Met 81:33–45

    Article  CAS  Google Scholar 

  11. Unocic KA, Pint BA (2010) Characterization of the alumina scale formed on a commercial MCrAlYHfSi coating. Surf Coat Technol 205:1178–1182

    Article  CAS  Google Scholar 

  12. Ye L, Chen H, Yang G, Liu B, Gao Y (2018) Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling. Prog Nat Sci Mater Int 28:34–39

    Article  CAS  Google Scholar 

  13. Yang YF, Jiang CJ, Yao HR, Bao ZB, Zhu SL, Wang FH (2016) Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating. Corros Sci 113:17–25

    Article  CAS  Google Scholar 

  14. Li DQ, Guo HB, Wang D, Zhang T, Gong SK, Xu HB (2013) Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 °C. Corros Sci 66:125–135

    Article  CAS  Google Scholar 

  15. Wang YQ, Suneson M (2013) Oxidation behavior of Hf-modified aluminide coatings on Haynes-188 at 1050 °C. Surf Coat Technol 215:7–15

    Article  CAS  Google Scholar 

  16. Pint BA, Haynes JA, Besmann TM (2010) Effect of Hf and Y alloy additions on aluminide coating performance. Surf Coat Technol 204:3287–3293

    Article  CAS  Google Scholar 

  17. Hou P (2008) Segregation phenomena at thermally grown Al2O3/alloy interfaces. Annu Rev Mater Res 38:275–298

    Article  CAS  Google Scholar 

  18. Das D, Gleeson B, Murphy K, Ma S, Pollock T (2009) Formation of secondary reaction zone in ruthenium bearing nickel based single crystal superalloys with diffusion aluminide coatings. Mater Sci Technol 25:300–308

    Article  CAS  Google Scholar 

  19. Cavaletti E, Naveos S, Mercier S, Josso P, Bacos M-P, Monceau D (2009) Ni–W diffusion barrier: its influence on the oxidation behaviour of a β-(Ni,Pt) Al coated fourth generation nickel-base superalloy. Surf Coat Technol 204:761–765

    Article  CAS  Google Scholar 

  20. Veys J, Mevrel R (1987) Influence of protective coatings on the mechanical properties of CMSX-2 and Cotac 784. Mater Sci Eng 88:253–260

    Article  CAS  Google Scholar 

  21. Matsuoka Y, Aoki Y, Matsumoto K, Satou A, Suzuki T, Chikugo K, Murakami K (2004) The formation of SRZ on a fourth generation single crystal superalloy applied with aluminide coating. Superalloys 2004:637–642

    Article  Google Scholar 

  22. Bai B, Guo HB, Peng H, Peng LQ, Gong SK (2011) Cyclic oxidation and inter-diffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy. Corros Sci 53:2721–2727

    Article  CAS  Google Scholar 

  23. Wang Y, Guo HB, Peng H, Peng LQ, Gong SK (2011) Diffusion barrier behaviors of (Ru, Ni) Al/NiAl coatings on Ni-based superalloy substrate. Intermetallics 19:191–195

    Article  CAS  Google Scholar 

  24. Narita T, Thosin KZ, Fengqun L, Hayashi S, Murakami H, Gleeson B, Young D (2005) Development of Re-based diffusion barrier coatings on nickel based superalloys. Mater Corros 56:923–929

    Article  CAS  Google Scholar 

  25. Wu F, Murakami H, Suzuki A (2003) Development of an iridium–tantalum modified aluminide coating as a diffusion barrier on nickel-base single crystal superalloy TMS-75. Surf Coat Technol 168:62–69

    Article  CAS  Google Scholar 

  26. Wang QM, Wu YN, Guo MH, Ke PL, Gong J, Sun C, Wen L (2005) Ion-plated Al–O–N and Cr–O–N films on Ni-base superalloys as diffusion barriers. Surf Coat Technol 197:68–76

    Article  CAS  Google Scholar 

  27. Yao HR, Bao ZB, Shen ML, Zhu SL, Wang FH (2017) A magnetron sputtered microcrystalline β-NiAl coating for SC superalloys. Part II. Effects of a NiCrO diffusion barrier on oxidation behavior at 1100 °C. Appl Surf Sci 407:485–494

    Article  CAS  Google Scholar 

  28. Cremer R, Witthaut M, Reichert K, Neuschütz D (1999) Surface and interface analysis of PVD Al–O–N and γ-Al2O3 diffusion barriers. Fresenius J Anal Chem 365:158–162

    Article  CAS  Google Scholar 

  29. Müller J, Schierling M, Zimmermann E, Neuschütz D (1999) Chemical vapor deposition of smooth α-Al2O3 films on nickel base superalloys as diffusion barriers. Surf Coat Technol 120:16–21

    Article  Google Scholar 

  30. Hayashi S, Gleeson B (2009) Early-Stage oxidation behavior of Pt-modified γ’-Ni3Al l-based alloys with and without Hf addition. Oxid Met 71:5–19

    Article  CAS  Google Scholar 

  31. Hayashi S, Gleeson B (2012) Phase transformation behavior of A2O3 scale formed on Pt-modified γ’-Ni3Al-based alloys with and without Hf addition. Oxid Met 77:237–251

    Article  CAS  Google Scholar 

  32. Brewer L (1953) Thermodynamic properties of the oxides and their vaporization processes. Chem Rev 52:1–75

    Article  CAS  Google Scholar 

  33. Volz K, Kiuchi M, Ensinger W (1999) Formation of hafnium nitride films by medium-energy ion-beam-assisted deposition. Surf Coat Technol 120–121:353–357

    Article  Google Scholar 

  34. Liu CT, Inouye H, Carpenter RW (1973) Structure and mechanical properties of internally oxidized Ta-8%W-2% Hf (T-111) alloy. Metall Trans A 4:1839–1850

    Article  CAS  Google Scholar 

  35. Moon DP (1989) Role of reactive elements in alloy protection. Mater Sci Technol Lond 5:754–764

    Article  CAS  Google Scholar 

  36. He J, Zhang Z, Peng H, Gong SK, Guo HB (2015) The role of Dy and Hf doping on oxidation behavior of two-phase (γ′ + β) Ni–Al alloys. Corros Sci 98:699–707

    Article  CAS  Google Scholar 

  37. Song Y, Guo ZX, Yang R, Li D (2001) First principles study of site substitution of ternary elements in NiAl. Acta Mater 49:1647–1654

    Article  CAS  Google Scholar 

  38. Jiang C, Besser MF, Sordelet DJ, Gleeson B (2005) A combined first-principles and experimental study of the lattice site preference of Pt in B2-NiAl. Acta Mater 53:2101–2109

    Article  CAS  Google Scholar 

  39. Slater JC (1964) Atomic radii in crystals. J Chem Phys 41:3199–3204

    Article  CAS  Google Scholar 

  40. Pauling L (1947) Atomic radii and interatomic distances in metals. J Am Chem Soc 69:542–553

    Article  CAS  Google Scholar 

  41. He LM, Meyer JD, Lee WY (2004) Effects of prehafnizing on morphological development of a chemical vapor deposition aluminide coating formed on single-crystal Ni-based superalloy. Metall Trans A 35A:891–897

    Article  CAS  Google Scholar 

  42. Haynes JA, Zhang Y, Cooley KM, Walker L, Reeves KS, Pint BA (2004) High-temperature diffusion barriers for protective coatings. Surf Coat Technol 188:153–157

    Article  CAS  Google Scholar 

  43. Tolpygo V, Murphy K, Clarke D (2008) Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings. Acta Mater 56:489–499

    Article  CAS  Google Scholar 

  44. Yamaguchi A, Murakami H, Kuroda S, Imai H (2007) Effect of Hf addition on oxidation properties of Pt–Ir modified aluminide coating. Metall Mater Trans A 9:2422–2426

    Google Scholar 

  45. Tolpygo VK, Clarke DR (2009) Rumpling of CVD (Ni,Pt)Al diffusion coatings under intermediate temperature cycling. Surf Coat Technol 203:3278–3285

    Article  CAS  Google Scholar 

  46. Balint D, Xu T, Hutchinson J, Evans A (2006) Influence of bond coat thickness on the cyclic rumpling of thermally grown oxides. Acta Mater 54:1815–1820

    Article  CAS  Google Scholar 

  47. Tolpygo VK, Clarke D (2004) On the rumpling mechanism in nickel-aluminide coatings: part II: characterization of surface undulations and bond coat swelling. Acta Mater 52:5129–5141

    CAS  Google Scholar 

  48. Tolpygo VK, Clarke D (2004) On the rumpling mechanism in nickel-aluminide coatings: part I: an experimental assessment. Acta Mater 52:5115–5127

    CAS  Google Scholar 

  49. Balint D, Hutchinson J (2003) Undulation instability of a compressed elastic film on a nonlinear creeping substrate. Acta Mater 51:3965–3983

    Article  CAS  Google Scholar 

  50. Bull S (1998) Modeling of residual stress in oxide scales. Oxid Met 49:1–17

    Article  CAS  Google Scholar 

  51. Jiang CY, Qian LY, Feng M, Liu H, Bao ZB, Chen MH, Zhu SL, Wang FH (2019) Benefits of Zr addition to oxidation resistance of a single-phase (Ni,Pt) Al coating at 1373 K. J Mater Sci Technol 35:1334–1344. https://doi.org/10.1787/5jxrjncwxv6j-en

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “National Key Research and Development Program” (2018YFB2002000), “Science and Technology Program of Guangzhou” (202007020008), “Fundamental Research Funds for the Central Universities” (21619334) and the Scientific Research Funds for the Talents and Innovation Foundation of Jinan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. F. Yang or P. Ren.

Ethics declarations

Conflict of interest

The authors hereby declare, to the best of their knowledge, that all relationships and/or interests of the manuscript do not include a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.F., Ren, P., Bao, Z.B. et al. Microstructure and cyclic oxidation of a Hf-doped (Ni,Pt)Al coating for single-crystal superalloys. J Mater Sci 55, 11687–11700 (2020). https://doi.org/10.1007/s10853-020-04782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04782-5

Navigation