Skip to main content
Log in

Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of post-precipitation washing with ethanol on the evolution of the porous texture and structure of ZrO2 upon calcination in air has been investigated. Washing of the hydrogel of zirconia with ethanol was found to exert little influence on the process of crystallization of the hydrous zirconia: neither the temperature of crystallization nor the enthalpy change associated with the transition of the amorphous to the metastable tetragonal phase of zirconia was influenced significantly. On the other hand, the thermal stability of the tetragonal phase formed was found to be drastically reduced by effects imparted by the nature of the solvent used for washing the hydrogel; the process of phase-transformation to the thermodynamically more stable monoclinic modification was promoted strongly as a consequence of the washing with ethanol. This influence of ethanol washing appears to arise from a promotional effect of carbonaceous residues; these carbonaceous impurities are thought to facilitate the nucleation of the monoclinic phase. Washing the precipitate with ethanol was also found to have a profound effect on the textural properties of the (calcined) zirconia: the specific surface area, total pore volume and most frequent pore radius were all increased significantly. These effects of ethanol washing are believed to be due to an inhibition of polycondensation reactions of the surface hydroxyl groups located on adjacent particles which would have yielded new Zr-O-Zr bonds; this is probably associated with the presence of surface ethoxide species, the formation of which has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fujii, N. Mizuno andM. Misono,Chem. Lett. (1987) 2147.

  2. L. A. Bruce andJ. F. Mathews,Appl. Catal. 4 (1982) 353.

    Google Scholar 

  3. L. A. Bruce, G. J. Hope andJ. F. Mathews,ibid. 8 (1983) 349.

    Google Scholar 

  4. E. V. Prokhorenko, N. V. Pavlenko andG. I. Golodets,Kinet. Catal. (English Trans.)29 (1988) 702.

    Google Scholar 

  5. J. G. vanOmmen, P. J. Gellings andJ. R. H. Ross, in “Methane Conversion”, edited by D. M. Bibby, C. D. Chang, R. F. Howe and S. Yurchak (Elsevier, Amsterdam, 1988) p. 213.

    Google Scholar 

  6. K. C. Pratt, J. V. Sanders andV. Christov,J. Catal. 124 (1990) 416.

    Google Scholar 

  7. J. P. vanHook andJ. C. Yarze, US Pat. 4026 823 (1977).

  8. G. R. Gavalas, C. Phichitkul andG. E. Voecks,J. Catal. 88 (1984) 54.

    Google Scholar 

  9. K. Tanabe,Mater. Chem. Phys. 13 (1985) 347.

    Google Scholar 

  10. D. L. Trimm andA. Stanislaus,Appl. Catal. 21 (1986) 215.

    Google Scholar 

  11. D. L. Trimm, in “Design of Industrial Catalysts” (Chemical Engineering Monographs 11, Elsevier, Amsterdam, 1980).

    Google Scholar 

  12. P. D. L. Mercera, J. G. vanOmmen, E. B. M. Doesburg, A. J. Burggraaf andJ. R. H. Ross,Appl. Catal. 57 (1990) 127.

    Google Scholar 

  13. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol andT. Siemieniewska,Pure Appl. Chem. 57 (1985) 603.

    Google Scholar 

  14. H. Th. Rijnten, Thesis, Delft University of Technology (1971).

  15. E. Crucean andB. Rand,Trans. Brit. Ceram. Soc. 78 (1979) 58.

    Google Scholar 

  16. F. G. R. Gimblett, A. A. Rahman andK. S. W. Sing,J. Colloid Interface Sci. 84 (1981) 337.

    Google Scholar 

  17. K. Haberko,Ceram. Int. 5 (1979) 148.

    Google Scholar 

  18. M. S. Kaliszewski andA. H. Heuer,J. Amer. Ceram. Soc. 73 (1990) 1504.

    Google Scholar 

  19. R. Yu. Sheinfain andT. F. Makovskaya,Koll. Zh. 38 (1976) 816.

    Google Scholar 

  20. A. Roosen andH. Hausner, in “Ceramic Powders”, edited by P. Vincenzini, Materials Science Monographs 16 (Elsevier, Amsterdam, 1983) p. 773.

    Google Scholar 

  21. F. Dogan andH. Hausner, in “Ceramic Transactions, Ceramic Powder Science II”, Vol. 1, edited by G. L. Messing, E. R. Fuller Jr and H. Hausner (American Ceramic Society, Westerville, OH, 1988) p. 127.

    Google Scholar 

  22. S. L. Jones andC. J. Norman,J. Amer. Ceram. Soc. 71 (1988) C-190.

    Google Scholar 

  23. M. J. Readey, R. R. Lee, J. W. Halloran andA. H. Heuer,ibid. 73 (1990) 1499.

    Google Scholar 

  24. T. Kosmac, R. Gopala Krishnan, V. Krasevec andM. Kosmac,J. Phys. Coll. C1 47 (1986) C1–43.

    Google Scholar 

  25. M. A. C. G. van deGraaf, J. H. H. terMaat andA. J. Burggraaf,J. Mater. Sci. 20 (1985) 1407.

    Google Scholar 

  26. H. Toraya, M. Yoshimura andS. Somiya,J. Amer. Ceram. Soc. 67 (1984) C-119.

    Google Scholar 

  27. P. D. L. Mercera, J. G. vanOmmen, E. B. M. Doesburg, A. J. Burggraaf andJ. R. H. Ross,Appl. Catal.,78 (1991) 79.

    Google Scholar 

  28. R. Srinivasan, M. B. Harris, S. F. Simpson, R. J. De Angelis andB. H. Davis,J. Mater. Res. 3 (1988) 787.

    Google Scholar 

  29. M. J. Torralvo, M. A. Alario andJ. Soria,J. Catal. 86 (1984) 473.

    Google Scholar 

  30. P. D. L. Mercera, J. G. vanOmmen, E. B. M. Doesburg, A. J. Burggraaf andJ. R. H. Ross, unpublished results 1988.

  31. D. Michel, M. Perez y Jorba andR. Collongues,J. Raman Spectrosc. 5 (1976) 163.

    Google Scholar 

  32. D. Michel, M. T. van denBorre andA. Ennaciri, in “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto and H. Yanagida, Advances in Ceramics Vol.24 (1988) p. 555.

  33. C. M. Phillippi andK. S. Mazdiyasni,J. Amer. Ceram. Soc. 54 (1971) 254.

    Google Scholar 

  34. V. G. Keramidas andW. B. White,ibid. 57 (1974) 22.

    Google Scholar 

  35. A. Ayral, T. Assih, M. Abenoza, J. Phalippou, A. Lecomte andA. Dauger,J. Mater. Sci. 25 (1990) 1268.

    Google Scholar 

  36. J. Livage, K. Doi andC. Mazieres,J. Amer. Ceram. Soc. 51 (1968) 349.

    Google Scholar 

  37. F. C. Wu andS. C. Yu,J. Mater. Sci. 25 (1990) 970.

    Google Scholar 

  38. M. A. Blesa, A. J. G. Maroto, S. I. Passaggio, N. E. Figliolia andG. Rigotti,ibid. 20 (1985) 4601.

    Google Scholar 

  39. E. Tani, M. Yoshimura andS. Somiya,J. Amer. Ceram. Soc. 66 (1983) 11.

    Google Scholar 

  40. R. Cypres, R. Wollast andJ. Raucq,Ber. Deut. Keram. Ges. 40 (1963) 527.

    Google Scholar 

  41. B. H. Davis,J. Amer. Ceram. Soc. 67 (1984) C-168.

    Google Scholar 

  42. R. Srinivasan, R. De Angelis andB. H. Davis,J. Mater. Res. 1 (1986) 583.

    Google Scholar 

  43. R. C. Garvie,J. Phys. Chem. 69 (1965) 1238.

    Google Scholar 

  44. R. C. Garvie andM. F. Goss,J. Mater. Sci. 21 (1986) 1253.

    Google Scholar 

  45. R. C. Garvie,J. Phys. Chem. 82 (1978) 218.

    Google Scholar 

  46. S. I. Pyun, H. J. Jung andG. D. Kim, in “High Tech Ceramics”, edited by P. Vincenzini (Elsevier, Amsterdam, 1987) p. 271.

    Google Scholar 

  47. T. Mitsuhashi, M. Ichihara andU. Tatsuke,J. Am. Ceram. Soc. 57 (1974) 97.

    Google Scholar 

  48. M. I. Osendi, J. S. Moya, C. J. Serna andJ. Soria,ibid. 68 (1985) 135.

    Google Scholar 

  49. E. Bernstein, M. G. Blanchin andA. Samdi,Ceram. Int. 15 (1989) 337.

    Google Scholar 

  50. M. C. Caracoche, M. T. Dova andA. R. Lopez Garcia,J. Mater. Res. 5 (1990) 1940.

    Google Scholar 

  51. R. A. vanSanten,J. Phys. Chem. 88 (1984) 5768.

    Google Scholar 

  52. R. P. Denkewicz Jr, K. S. Tenhuisen andJ. H. Adair,J. Mater. Res. 5 (1990) 2698.

    Google Scholar 

  53. I. W. Chen, Y. H. Chiao andK. Tsuzaki,Acta Metall. 33 (1985) 1847.

    Google Scholar 

  54. A. H. Heuer, N. Claussen, W. M. Kriven andM. Ruhle,J. Amer. Ceram. Soc. 65 (1982) 642.

    Google Scholar 

  55. S. J. Gregg andK. S. W. Sing, in “Adsorption, Surface Area and Porosity”, 2nd Edn (Academic Press, London, 1982).

    Google Scholar 

  56. J. H. deBoer, in “The Structure and Properties of Porous Materials”, edited by D. H. Everett and F. S. Stone (Butterworths, London, 1958) p. 68.

    Google Scholar 

  57. B. C. Lippens andJ. H. deBoer,J. Catal. 4 (1965) 319.

    Google Scholar 

  58. E. P. Barrett, L. G. Joyner andP. P. Halenda,J. Amer. Chem. Soc. 73 (1951) 373.

    Google Scholar 

  59. J. C. P. Broekhoff, in “Preparation of Catalysts II”, edited by B. Delmon, P. Grange, P. Jacobs and G. Poncelet (Elsevier, Amsterdam, 1979) p. 663.

    Google Scholar 

  60. D. H. Everett, in “Characterization of Porous Solids”, edited by K. K. Unger, J. Rouquerol, K. S. W. Sing and H. Kral (Elsevier, Amsterdam, 1988) p. 1.

    Google Scholar 

  61. D. H. Everett, in “Characterization of Porous Solids”, edited by S. J. Gregg, K. S. W. Sing and H. F. Stoeckli (Society of the Chemistry Industry, London, 1979) p. 229.

    Google Scholar 

  62. A. White, A. Walpole, Y. Huang andD. L. Trimm,Appl. Catal. 56 (1989) 187.

    Google Scholar 

  63. M. J. Readey, R. R. Lee andA. H. Heuer, in “89th Annual Meeting Abstracts” (American Ceramic Society, April 1987), p. 70-B-87.

  64. P. D. L. Mercera, R. B. G. Velthuis andJ. R. H. Ross, unpublished results 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercera, P.D.L., Van Ommen, J.G., Doesburg, E.B.M. et al. Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia. J Mater Sci 27, 4890–4898 (1992). https://doi.org/10.1007/BF01105251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01105251

Keywords

Navigation