Skip to main content
Log in

NiTi-Polyimide Composites Prepared Using Thermal Imidization Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We manufactured NiTi plate-polyimide composite samples and analyzed their thermomechanical behavior. The residual stresses formed in the composite result from the shift of transformation temperatures and shape changes during thermal cycling. We demonstrate the use of finite element analysis for modeling the shape changes. The shape changes result from the difference in coefficients of thermal expansion and from the changes of Young’s modulus and of the coefficient of thermal expansion in the NiTi shape memory alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Ishii, Y. Miyahara, S. Kambe, N. Kutsuzawa, and A. Ishida, Repeatable Shape Memory Effect and Mechanical Resonance of TiNiCu-Coated Magnetic Ribbons, J. Phys. Conf. Ser., 2011, 266, p 012070

    Article  Google Scholar 

  2. K.A. Tsoi, J. Schrooten, Y. Zheng, and R. Stalmans, Part II. Thermomechanical Characteristics of Shape Memory Alloy Composites, Mater. Sci. Eng. A, 2004, 368, p 299–310

    Article  Google Scholar 

  3. L. Heller, D. Vokoun, P. Sittner, and H. Finckh, 3D Flexible NiTi-Braided Elastomer Composites for Smart Structure Applications, Smart Mater. Struct., 2012, 21, p 045016

    Article  Google Scholar 

  4. D. Vokoun, P. Sedlak, M. Frost, J. Pilch, D. Majtas, and P. Sittner, Velcro-Like Fasteners Based on NiTi Micro-Hook Arrays, Smart Mater. Struct., 2011, 20, p 085027

    Article  Google Scholar 

  5. J.J. Gill, D.T. Chang, L.A. Momoda, and G.P. Carman, Manufacturing issues of thin film NiTi microwrapper, Sensors and Actuators A, 2001, 93, p 148–156

    Article  Google Scholar 

  6. A. Ishida and M. Sato, Ti-Ni-Cu Shape-Memory Alloy Thin Film Formed on Polyimide Substrate, Thin Solid Films, 2008, 516, p 7836–7839

    Article  Google Scholar 

  7. W.L. Benard, H. Kahn, A.H. Heuer, and M.A. Huff, Thin-Film Shape-Memory Alloy Actuated Micropumps, J. Microelectromech. Syst., 1998, 7, p 245–251

    Article  Google Scholar 

  8. J.L. Seguin, M. Bendahan, A. Isalgue, V. Esteve-Cano, H. Carchano, and V. Torra, Low Temperature Crystallised Ti-Rich NiTi Shape Memory Alloy Films for Microactuators, Sens. Actuators A, 1999, 74, p 65–69

    Article  Google Scholar 

  9. A. Ishida, Ti-Ni-Cu/Polyimide Composite-Film Actuator and Simulation Tool, Sens. Actuators A, 2015, 222, p 228–236

    Article  Google Scholar 

  10. V.G. Kotnur, F.D. Tichelaar, and G.C.A.M. Janssen, Sputter Deposited Ni-Ti Thin Films on Polyimide Substrate, Surf. Coat. Technol., 2013, 222, p 44–47

    Article  Google Scholar 

  11. V.G. Kotnur, F.D. Tichelaar, W.T. Fu, J.T.M. De Hosson, and G.C.A.M. Janssen, Shape Memory NiTi Thin Films Deposited on Polyimide at Low Temperature, Surf. Coat. Technol., 2014, 258, p 1145–1151

    Article  Google Scholar 

  12. T. Verbiest, D.M. Burland, M.C. Jurich, V.Y. Lee, R.D. Miller, and W. Volksen, Exceptionally Thermally Stable Polyimides for Second-Order Nonlinear Optical Applications, Science, 1995, 268, p 1604–1606

    Article  Google Scholar 

  13. J. de Abajo and J.G. de la Campa, Processable Aromatic Polyimides. Source: Progress in Polyimide Chemistry, Vol 140, Advances in Polymer Science Springer, Berlin, 1999, p 23–59

    Google Scholar 

  14. K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1998

    Google Scholar 

  15. S. Numata and T. Miwa, Thermal Expansion Coefficients and Moduli of Uniaxially Stretched Polyimide Films with Rigid and Flexible Molecular Chains, Polymer, 1989, 30, p 1170–1174

    Article  Google Scholar 

  16. Z.D. Wang, X.X. Zhao, S.Q. Jiang, and J.J. Lu, Determining Thermal Expansion Coefficient of Stressed Thin Films at Low Temperature, Polym. Test., 2005, 24, p 839–843

    Article  Google Scholar 

  17. S.X. Lu, P. Cebe, and M. Capel, Thermal Stability and Thermal Expansion Studies of PEEK and Related Polyimides, Polymer, 1996, 37, p 2999–3009

    Article  Google Scholar 

  18. I. Stachiv, D. Vokoun, and Y. Jeng, Measurement of Young’s Modulus and Volumetric Mass Density/Thickness of Ultrathin Films Utilizing Resonant Based Mass Sensors, Appl. Phys. Lett., 2014, 104, p 083102

    Article  Google Scholar 

  19. H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Cryst., 1969, 2, p 65–71

    Article  Google Scholar 

  20. https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software/overview/topas.html

  21. T.W. Clyne, Residual Stresses in Surface Coatings and Their Effects on Interfacial Debonding, Key Eng. Mater., 1996, 116-117, p 307–330

    Article  Google Scholar 

  22. R.W. Pryor, Multiphysics Modeling Using Comsol: A first Principles Approach, Jones and Bartlett publishers, Sudbury, 2011

    Google Scholar 

  23. Y. Liu, X. Chen, and P.G. McCormick, Effect of Low Temperature Aging on the Transformation Behavior of Near-Equiatomic NiTi, J. Mater. Sci., 1997, 32, p 5979–5984

    Article  Google Scholar 

  24. K.A. Tsoi, R. Stalmans, and J. Schrooten, Transformational Behavior of Constrained Shape Memory Alloys, Acta Mater., 2002, 50, p 3535–3544

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Czech Science Foundation, within projects GA14-15264S and GC15-13174J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vokoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vokoun, D., Sysel, P., Heller, L. et al. NiTi-Polyimide Composites Prepared Using Thermal Imidization Process. J. of Materi Eng and Perform 25, 1993–1999 (2016). https://doi.org/10.1007/s11665-016-2019-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2019-2

Keywords

Navigation