Skip to main content
Log in

A fuzzy rule-based PID controller for dynamic positioning of vessels in variable environmental disturbances

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Conventional dynamic positioning systems are based on PID controllers and an extended Kalman filter or a nonlinear state observer. However, it is nontrivial to tune the control parameters, and the station-keeping performance varies with environmental or loading conditions since the dynamics of the vessel are essentially nonlinear. To overcome these difficulties, a fuzzy rule-based PID controller is evaluated, which takes the estimated positioning error and low-frequency velocity as inputs, and outputs the time-varying PD control coefficients through fuzzy inference, while the integral control parameters are kept constant. The performance of the proposed controller is evaluated numerically through a time domain simulation of a dynamically positioned semi-submersible platform operating in variable environmental disturbances. Simulation results are compared with the conventional fixed gain PID controller, and the comparison results show that the proposed fuzzy PID controller can automatically tune the PD control coefficients according to the positioning accuracy and significantly improve the performance of the dynamic positioning system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sørensen AJ (2011) A survey of dynamic positioning control systems. Annu Rev Control 35(1):123–136

    Article  Google Scholar 

  2. Balchen JG, Jenssen NA, Sælid S (1976) Dynamic positioning using kalman filtering and optimal control theory. In: IFAC/IFIP symposium on automation in offshore oil field operation, vol 183, p 186

  3. Jenssen N (1981) Estimation and control in dynamic positioning of vessels. NTH (NTNU), Norway

  4. Fung P, Grimble M (1983) Dynamic ship positioning using a self-tuning kalman filter. IEEE Trans Autom Control 28(3):339–350

    Article  Google Scholar 

  5. Aarset MF, Strand JP, Fossen TI (1998) Nonlinear vectorial observer backstepping with integral action and wave filtering for ships. IFAC Proc Vol 31(30):77–82

    Article  Google Scholar 

  6. Fossen TI, Grovlen A (1998) Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Trans Control Syst Technol 6(1):121–128

    Article  Google Scholar 

  7. Bertin D, Bittanti S, Meroni S, Savaresi SM (2000) Dynamic positioning of a single-thruster vessel by feedback linearization. In: Proceedings of the IFAC conference on manoeuvring and control of marine craft, pp 275–280

  8. Fossen TI, Strand JP (1999) Passive nonlinear observer design for ships using lyapunov methods: full-scale experiments with a supply vessel. Automatica 35(1):3–16

    Article  MathSciNet  Google Scholar 

  9. Strand JP, Fossen TI (1999) Nonlinear passive observer design for ships with adaptive wave filtering. In: New Directions in nonlinear observer design, Springer, pp 113–134

  10. Tannuri EA, Donha D, Pesce C (2001) Dynamic positioning of a turret moored fpso using sliding mode control. Int J Robust Nonlinear Control IFAC Aff J 11(13):1239–1256

    Article  Google Scholar 

  11. Tannuri E, Agostinho A, Morishita H, Moratelli L Jr (2010) Dynamic positioning systems: an experimental analysis of sliding mode control. Control Eng Pract 18(10):1121–1132

    Article  Google Scholar 

  12. Xu S, Li B, Wang X, Wang L (2016) A novel real-time estimate method of wave drift force for wave feed-forward in dynamic positioning system. Ships Offsh Struct 11(7):747–756

    Article  Google Scholar 

  13. Fannemel ÅV (2008) Dynamic positioning by nonlinear model predictive control. Master’s thesis, Institutt for teknisk kybernetikk

  14. Sotnikova MV, Veremey EI (2013) Dynamic positioning based on nonlinear mpc. IFAC Proc Vol 46(33):37–42

    Article  Google Scholar 

  15. Veksler A, Johansen TA, Borrelli F, Realfsen B (2016) Dynamic positioning with model predictive control. IEEE Trans Control Syst Technol 24(4):1340–1353

    Article  Google Scholar 

  16. Stephens RI, Burnham KJ, Reeve PJ (1995) A practical approach to the design of fuzzy controllers with application to dynamic ship positioning. IFAC Proc Vol 28(2):370–377

    Article  Google Scholar 

  17. Chang WJ, Chen GJ, Yeh YL (2002) Fuzzy control of dynamic positioning systems for ships. J Mar Sci Technol 10(1):47–53

    Google Scholar 

  18. Lee TH, Cao Y, Lin YM (2002) Dynamic positioning of drilling vessels with a fuzzy logic controller. Int J Syst Sci 33(12):979–993

    Article  Google Scholar 

  19. Chen XT, Tan WW (2010) A type-2 fuzzy logic controller for dynamic positioning systems. In: IEEE ICCA 2010, IEEE, pp 1013–1018

  20. Yamamoto M, Morooka C (2005) Dynamic positioning system of semi-submersible platform using fuzzy control. J Braz Soc Mech Sci Eng 27(4):449–455

    Article  Google Scholar 

  21. Hu BG, Mann GK, Gosine RG (2001) A systematic study of fuzzy pid controllers-function-based evaluation approach. IEEE Trans Fuzzy Syst 9(5):699–712

    Article  Google Scholar 

  22. Mann GK, Gosine RG (2002) Adaptive hierarchical tuning of fuzzy controllers. Expert Syst 19(1):34–45

    Article  Google Scholar 

  23. Petrov M, Ganchev I, Taneva A (2002) Fuzzy pid control of nonlinear plants. Proc First Int IEEE Symp Intell Syst IEEE 1:30–35

    Article  Google Scholar 

  24. Tannuri EA, Kubota LK, Pesce CP (2006) Adaptive techniques applied to offshore dynamic positioning systems. J Braz Soc Mech Sci Eng 28(3):323–330

    Article  Google Scholar 

  25. Fossen TI (2011) Handbook of marine craft hydrodynamics and motion control. Wiley, Oxford

    Book  Google Scholar 

  26. Faltinsen O (1993) Sea loads on ships and offshore structures, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  27. DNV (1998) SESAM-User Manual

  28. Johansen TA, Fossen TI, Berge SP (2004) Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming. IEEE Trans Control Syst Technol 12(1):211–216

    Article  Google Scholar 

  29. Xu S, Wang X, Wang L, Li B (2019) Tuning parameters sensitivity analysis study for a dp roll-pitch motion controller for small waterplane surface vessels. J Mar Sci Technol 24(2):565–574

    Article  Google Scholar 

  30. Arditti F, Cozijn H, Van Daalen E, Tannuri E (2018) Robust thrust allocation algorithm considering hydrodynamic interactions and actuator physical limitations. J Mar Sci Technol:1–14

  31. Zhao ZY, Tomizuka M, Isaka S (1993) Fuzzy gain scheduling of pid controllers. IEEE Trans Syst Man Cybern 23(5):1392–1398

    Article  Google Scholar 

  32. Serraris JJ (2009) Time domain analysis for dp simulations. In: ASME 2009 28th international conference on ocean, offshore and arctic engineering, American Society of Mechanical Engineers, pp 595–605

Download references

Acknowledgements

The authors greatly acknowledge the supports of the National Natural Science Foundation of China (Grant 51709170), the Ministry of Industry and Information Technology [Mooring position technology: floating support platform engineering (II)], and the Shanghai Sailing Program (Grant 17YF1409700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Wang, X., Yang, J. et al. A fuzzy rule-based PID controller for dynamic positioning of vessels in variable environmental disturbances. J Mar Sci Technol 25, 914–924 (2020). https://doi.org/10.1007/s00773-019-00689-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-019-00689-2

Keywords

Navigation