Skip to main content
Log in

GUANAY-II: an autonomous underwater vehicle for vertical/horizontal sampling

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents the design and construction of Guanay-II vehicle. It is an autonomous underwater vehicle that navigates over the sea surface and, at certain fixed points, dives vertically to obtain a profile of a water column. It was designed for shallow water, with maximum depth of 30 m. The vehicle uses a cylinder to do the immersions. The cylinder can take in and eject water smoothly, thus it can change the vehicle’s buoyancy, and avoid creating perturbations in the environment. The designed vehicle has a double-hull structure. The external fiberglass hull, which is not watertight, has been designed in accordance with Myring profiles to provide good hydrodynamic performance. The watertight module located inside the external hull is made of aluminum and contains the immersion actuator, batteries and the electronic system to control the vehicle operations. The control system is divided into several subsystems: navigation, propulsion/immersion, safety, communication and data acquisition. The vehicle is 2300 mm in length by 320 mm in diameter, and weighs 90 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Timothy Pennington J, Chavez FP (2000) Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station h3/m1 over 1989–1996 in monterey bay, california. Deep Sea Res Part II Topical Studies Oceanogr 47(5):947–973

    Article  Google Scholar 

  2. Martinez-Alvarez V, Gallego-Elvira B, Maestre-Valero J, Tanguy M (2011) Simultaneous solution for water, heat and salt balances in a Mediterranean coastal lagoon (Mar Menor, Spain). Estuar Coast Shelf Sci 91(2):250–261

    Article  Google Scholar 

  3. Espinal-García P, Giraldo A, Londoño-Mesa M, Mejía-Ladino LM (2012) Variabilidad en la abundancia de larvas de crustáceos y poliquetos en bahía málaga, pacífico colombiano (enero-junio de 2010). Boletíin de Investigaciones Marinas y Costeras-INVEMAR. 41(2):355–373

    Google Scholar 

  4. Wulff F, Ulanowicz RE (1989) A comparative anatomy of the baltic sea and chesapeake bay ecosystems. Coast Estuar Studies 32:232–256

    Article  Google Scholar 

  5. Berger M, Camps A, Font J, Kerr Y, Miller J, Johannessen J, Boutin J, Drinkwater M, Skou N, Floury N et al (2002) Measuring ocean salinity with esas smos mission. ESA Bull 111(113f):113–121

    Google Scholar 

  6. Meyrowitz AL, Blidberg DR, Michelson RC (1996) Autonomous vehicles. In: Proceedings of the IEEE, vol 84, pp 1147–1164

  7. Blidberg DR (2001) The development of autonomous underwater vehicles (AUV): a brief summary. Autonomous Undersea Systems Institute publications (AUSI), Seoul

  8. Bellingham J, Zhang Y, Kerwin, J, Erikson J, Hobson B, Kieft B, Godin M, McEwen R, Hoover T, Paul J, Hamilton A, Franklin J, Banka A (2010) Efficient propulsion for the tethys long-range autonomous underwater vehicle. In: Autonomous underwater vehicles (AUV), 2010 IEEE/OES, pp 1 –7

  9. Roig D, Martínez M, Garau B, Alvárez A, Tintoré J (2005) A low-cost autonomous vehicles for coastal sea monitoring. Instrument viewpoint, pp 16–17

  10. Byron J, Tyce R (2007) Designing a vertical / horizontal auv for deep ocean sampling. In: Proceedings of MTS/IEEE conference and exhibition oceans 2007, Vancouver, pp 1–10

  11. Caffaz A, Caiti A, Casalino G, Turetta A (2010) The hybrid glider-auv fòlaga, field experience at the glint’08 experiment. IEEE robotics and automation magazine, vol 17, pp 31–44

  12. Dabholkar N, Desa E, Afzulpurkar S, Madhan R, Mascarenhas AAMQ, Navelkar G, Maurya PK, Prabhudesai S, Nagvekar S, Martins H, Sawkar G, Fernandes P, Manoj KK (2007) Development of an autonomous vertical profiler for oceanographic studies. In: Proceedings of the international symposium on ocean electronics (SYMPOL-2007), Cochin, pp 250–256

  13. Ribas D, Ridao P, Magi L, Palomeras N, Carreras M (2011) The Girona 500, a multipurpose autonomous underwater vehicle. In: OCEANS, 2011 IEEE, Spain, pp 1 –5

  14. Gomáriz S, Prat J, Sole J, Gayà P (2009) Designing a vertical/horizontal auv for deep ocean sampling. J Mar Res VI:23–35

  15. Gomáriz S, Prat J, Arbos A, Pallares O, Viñolo C (2009) Autonomous vehicle development for vertical submarine observation. In: International workshop on marine technology, Vilanova i La Geltrú

  16. Gomáriz S, Prat J, Gayà P, del Río J (2009) Development of low-cost autonomous oceanographic observation vehicle. In: Oceans’09 MTS/IEEE, Bremen

  17. Gomáriz S, González J, Arbos A, Masmitjà à I, Masmitjà G, Prat J (2011) Design and construction of the GUANAY-II autonomous underwater vehicle. In: Oceans’11 MTS/IEEE, Santander

  18. DeWijs B (2000) AUV/ROV propulsion thrusters. In: Proceedings of MTS/IEEE conference and exhibition oceans 2000, vol 1, Providence, pp 173–176

  19. Egeskov P, Bjerrum A, Pascoal A, Silvestre C, Aage C, Wagner Smith L (1994) Design, construction and hydrodynamic testing of the auv marius. In: Proceedings of the AUV 94, Cambridge

  20. Myring DF (1976) A theoretical study of body drag in subcritical axisymmetric flow. Aeronautical quarterly, pp 186–194

  21. Prestero T (2001) Verification of a six degree of freedom simulation model for the remus autonomous underwater vehicle, Master’s thesis

  22. Masmitjà I, Masmitjà G, González J, Shariat-Panahi S, Gomáriz S (2010) Development of a control system for an autonomous underwater vehicle. In: OES-IEEE AUV 2010, Monterey

  23. Thrusters. http://www.seaeye.com/thrusters.html. Accessed 29 July 2013

  24. Auv thrusters. http://www.seabotix.com/products/auv_thrusters.htm. Accessed 29 July 2013

  25. Obsea, expandable seafloor observatory. http://www.obsea.es. Accessed 29 July 2013

  26. González J, Masmitjà I, Gomariz S, Molino E, del Río J, Mànuel A, Busquets J, Guerrero A, López F, Carreras M, Ribas D, Carrera A, Candela C, Ridao P, Sousa J, Calado P, Pinto J, Sousa A, Martins R, Borrajo D, Olaya A, Garau B, González I, Torres S, Rajan K, McCann M, Gilabert J (2012) AUV based multivehicle collaboration: salinity studies in Mar Menor coastal lagoon. In: Navigation, guidance and control of underwater vehicles—NGCUV 2012, Porto

Download references

Acknowledgments

This work has been funded by the Spanish Ministry of Education and Science and the European Union (FEDER), projects n° CTM 2010-16274/MAR; CTM 2009-08867.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián González.

About this article

Cite this article

Gomáriz, S., Masmitjà, I., González, J. et al. GUANAY-II: an autonomous underwater vehicle for vertical/horizontal sampling. J Mar Sci Technol 20, 81–93 (2015). https://doi.org/10.1007/s00773-013-0253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-013-0253-y

Keywords

Navigation