Skip to main content
Log in

Impact of Anode on Product Formation During the Electrochemical Reduction of Chalcopyrite

  • Electrometallurgical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A hydrometallurgical process has been demonstrated to electrochemically convert chalcopyrite (CuFeS2) to less refractory mineral phases for subsequent chemical oxidation. The electrochemical reaction mechanisms are not well understood; consequently, researchers have been unable to improve the process. In this study, the bulk and surface phases of the chalcopyrite mineral during the progression of the electrochemical reactions are monitored using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The results suggest that chalcopyrite reacts at the cathode of the electrochemical reactor to release iron and form an intermediate chalcocite (Cu2S) mineral phase. Allowing Cu2S to contact the anode leads to the formation of covellite (CuS), whereas preventing the mineral from anode contact leads to the formation of cuprite (Cu2O). It was shown that copper ions are more easily extracted from Cu2O than CuS; therefore, it may be desirable to isolate the anode from mineral contact during the electrochemical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Doebrich, Copper: a metal for the ages, US Geological Survey (2009). https://pubs.er.usgs.gov/publication/fs20093031

  2. R.A. Kerr, Science 343, 722 (2014).

    Article  Google Scholar 

  3. W.G. Davenport, M.J. King, M.E. Schlesinger, and A.K. Biswas, Extractive Metallurgy of Copper (Amsterdam: Elsevier, 2002).

    Google Scholar 

  4. E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Hydrometallurgy 93, 81 (2008).

    Article  Google Scholar 

  5. M.M. Antonijević and G.D. Bogdanović, Hydrometallurgy 73, 245 (2004).

    Article  Google Scholar 

  6. R. Padilla, P. Pavez, and M.C. Ruiz, Hydrometallurgy 91, 113 (2008).

    Article  Google Scholar 

  7. V. Mahajan, M. Misra, K. Zhong, and M.C. Fuerstenau, Miner. Eng. 20, 670 (2007).

    Article  Google Scholar 

  8. E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Miner. Eng. 22, 229 (2009).

    Article  Google Scholar 

  9. G. Viramontes-Gamboa, M.M. Peña-Gomar, and D.G. Dixon, Hydrometallurgy 105, 140 (2010).

    Article  Google Scholar 

  10. J.E. Dutrizac, Can. Metall. Q. 28, 337 (1989).

    Article  Google Scholar 

  11. Y.J. Xian, S.M. Wen, J.S. Deng, J. Liu, and Q. Nie, Can. Metall. Q. 51, 133 (2012).

    Article  Google Scholar 

  12. Q. Yin, G.H. Kelsall, D.J. Vaughan, and K.E.R. England, Geochim. Cosmochim. Acta 59, 1091 (1995).

    Article  Google Scholar 

  13. C. Klauber, A. Parker, W. van Bronswijk, and H. Watling, Int. J. Miner. Process. 62, 65 (2001).

    Article  Google Scholar 

  14. R.P. Hackl, D.B. Dreisinger, E. Peters, and J.A. King, Hydrometallurgy 39, 25 (1995).

    Article  Google Scholar 

  15. Y. Yang, S. Harmer, and M. Chen, Hydrometallurgy 156, 89 (2015).

    Article  Google Scholar 

  16. M. Khoshkhoo, M. Dopson, A. Shchukarev, and Å. Sandström, Hydrometallurgy 149, 220 (2014).

    Article  Google Scholar 

  17. A. Ghahremaninezhad, E. Asselin, and D.G. Dixon, Electrochim. Acta 55, 5041 (2010).

    Article  Google Scholar 

  18. A. Ghahremaninezhad, D.G. Dixon, and E. Asselin, Electrochim. Acta 87, 97 (2013).

    Article  Google Scholar 

  19. N. Hiroyoshi, M. Arai, H. Miki, M. Tsunekawa, and T. Hirajima, Hydrometallurgy 63, 257 (2002).

    Article  Google Scholar 

  20. A. Ghahremaninezhad, R. Radzinski, T. Gheorghiu, D.G. Dixon, and E. Asselin, Hydrometallurgy 155, 95 (2015).

    Article  Google Scholar 

  21. J.B. Hiskey and M.E. Wadsworth, Metall. Mater. Trans. B 6, 183 (1975).

    Article  Google Scholar 

  22. H.-J. Sohn and M.E. Wadsworth, JOM 32, 18 (1980).

    Article  Google Scholar 

  23. D. Dreisinger and N. Abed, Hydrometallurgy 66, 37 (2002).

    Article  Google Scholar 

  24. F. Doyle and G. Lapidus, ECS Trans. 2, 189 (2006).

    Article  Google Scholar 

  25. T. Biegler and D.C. Constable, J. Appl. Electrochem. 7, 175 (1977).

    Article  Google Scholar 

  26. T. Biegler and D.A. Swift, J. Appl. Electrochem. 6, 229 (1976).

    Article  Google Scholar 

  27. T. Biegler, J. Electroanal. Chem. Interfacial Electrochem. 85, 101 (1977).

    Article  Google Scholar 

  28. A.E. Elsherief, Miner. Eng. 15, 215 (2002).

    Article  Google Scholar 

  29. C.-L. Liang, et al., Hydrometallurgy 107, 13 (2011).

    Article  Google Scholar 

  30. J.C. Fuentes-Aceituno, G.T. Lapidus, and F.M. Doyle, Hydrometallurgy 92, 26 (2008).

    Article  Google Scholar 

  31. J.C. Fuentes-Aceituno, G.T. Lapidus, F.M. Doyle, and J.-C. Lee, A qualitative study on the nature of electroassisted chalcopyrite reduction on different electrode materials.Hydrometallurgy Society for Mining, ed. C.A. Young, P.R. Taylor, C.G. Anderson, and Y. Choi (Littleton: Society for Mining, Metallurgy and Exploration, Inc. (SME), 2008), pp. 671–679. ISBN 978-0-87335-266-6.

    Google Scholar 

  32. J.C. Fuentes-Aceituno, G.T. Lapidus, and I. González, Electrochemical characterization of the solid products formed in the electroassisted reduction of chalcopyrite.Hydrometallurgy, ed. C.A. Young, P.R. Taylor, C.G. Anderson, and Y. Choi (Littleton: Society for Mining, Metallurgy and Exploration, Inc. (SME), , 2008), pp. 664–670. ISBN 978-0-87335-266-6.

    Google Scholar 

  33. V.J. Martínez-Gómez, J.C. Fuentes-Aceituno, R. Pérez-Garibay, and J. Lee, Hydrometallurgy 164, 54 (2016).

    Article  Google Scholar 

  34. V.J. Martínez-Gómez, J.C. Fuentes-Aceituno, R. Pérez-Garibay, and J. Lee, Hydrometallurgy 181, 195 (2018).

    Article  Google Scholar 

  35. H. Tokuda, et al., Chemosphere 73, 1448 (2008).

    Article  Google Scholar 

  36. E. Martínez-Jimenez, and G.T. Lapidus, The effect of complexing agents and the anode material on the kinetics of electro-assisted reduction of chalcopyrite, in T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, eds. by S. Wang, J.E. Dutrizac, M.L. Free, J.Y. Hwang, and D. Kim (The Minerals, Metals & Materials Society, 2012), pp. 217–224. ISBN 978-1-11829-123-8.

  37. G.T. Lapidus, E. Martínez-Jiménez, and C. Lara-Valenzuela, Factors influencing the electro-assisted reduction of chalcopyrite, in Proceedings of Copper 2013, Volume IV: Hydrometallurgy, ed. G. Ugarte (Instituto de Ingenieros de Minas de Chile (IIMCh), 2013), pp. 103–111.

  38. G.E. Barrera-Mendoza and G.T. Lapidus, Hydrometallurgy 158, 35 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1644869). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors gratefully acknowledge Freeport-McMoRan for providing the chalcopyrite mineral concentrate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. West.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donnelly, C.A., Vardner, J.T., Zhang, Z. et al. Impact of Anode on Product Formation During the Electrochemical Reduction of Chalcopyrite. JOM 72, 3818–3825 (2020). https://doi.org/10.1007/s11837-020-04100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04100-z

Navigation