Skip to main content

Advertisement

Log in

Metal cations in CO2 assimilation and conversion by plants

  • Manufacturing: Energy and Environment
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Green leaf tissues convert solar energy into the energy of chemical bonds of sugar molecules during the process of photosynthesis. The efficiency of this conversion can be much higher than the efficiency of any of the currently known silicon-based solar panels. Importantly, vast amounts of CO2 are assimilated during this process. The efficiency of photosynthesis is critically dependent on the availability of a large number of nutrients, among which metal cations such as K, Ca, Mg, Cu, Zn, Fe, Mn, and Ni play a key role. This paper summarizes the basic requirements and major functions for each of these essential nutrients in plant photosynthesis, both at the whole-plant and molecular level. Also discussed is how these requirements may be affected by the global climate trends and the prospects of creating artificial photosynthetic “bioreactors” for efficient energy conversion and CO2 assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Luo, Annual Rev. Ecol. Evol. Syst., 38 (2007), pp. 683–712.

    Article  Google Scholar 

  2. P. Forster et al., Climate Change 2007 (Cambridge: University Press, 2007), pp. 129–234.

    Google Scholar 

  3. R.C. Dalal and D.E. Allen, Austral. J. Bot., 56 (2008), pp. 369–407.

    Article  CAS  Google Scholar 

  4. K. Denman et al., Climate Change 2007 (Cambridge: University Press, 2007), pp. 499–587.

    Google Scholar 

  5. G.B. Bonan, Science, 320 (2008), pp. 1444–1449.

    Article  PubMed  ADS  CAS  Google Scholar 

  6. B.B. Buchanan et al., editors, Biochemistry and Molecular Biology of Plants (Rockville, MD: ASPP, 2000).

    Google Scholar 

  7. P.H. Raven et al., editors, Biology of Plants (New York: WH Freeman and Company, 1999).

    Google Scholar 

  8. B.J. Atwell et al., editors, Plants in Action (Melbourne, Australia: MacMillan, 1999).

    Google Scholar 

  9. H. Marschner, Mineral Nutrition of Higher Plants (San Diego, CA: Academic Press, 1995).

    Google Scholar 

  10. R. Lavon and E.E. Goldschmidt, J. Amer. Soc. Hort. Sci., 124 (1999), pp. 158–162.

    CAS  Google Scholar 

  11. A.W. Rutherford, Trends Biochim. Sci., 14 (1989), pp. 227–232.

    Article  CAS  Google Scholar 

  12. P.E. Kriedemann et al., Austral. J. Plant Physiol., 11 (1985), pp. 287–301.

    Article  Google Scholar 

  13. C. Bowler et al., EMBO J., 10 (1991), pp. 1723–1732.

    PubMed  CAS  Google Scholar 

  14. J.B. Marder and J. Barber, Plant Cell Environ., 12 (1989), pp. 595–614.

    Article  CAS  Google Scholar 

  15. S. Shabala, Ann. Bot., 92 (2003), pp. 627–634.

    Article  PubMed  CAS  Google Scholar 

  16. C.H. Suelter, Science, 168 (1970), pp. 789–795.

    Article  PubMed  ADS  CAS  Google Scholar 

  17. R.G. Wyn Jones et al., Recent Advances in the Biochemistry of Cereals (London: Acad. Press, 1979), pp. 63–103.

    Google Scholar 

  18. A. Lauchli and R. Pflugger, Proc. 11th Int. Congr. Int. Potash Inst. Ber. (1978), pp. 111–163.

  19. K.I. Shimazaki et al., Annual Rev. Plant Biol., 58 (2007), pp. 219–247.

    Article  CAS  Google Scholar 

  20. Fertilizer usage, FAOSTAT (2003), http://apps.fao.org/lim500/nph-wrap.pl?Fertilizers&Domain =LUI&servlet=1 .

  21. W. Laing et al., New Phytol., 146 (2000), pp. 47–57.

    Article  CAS  Google Scholar 

  22. O. Shaul, BioMetals, 15 (2002), pp. 309–323.

    Article  PubMed  CAS  Google Scholar 

  23. R.T. Wedding and M.K. Black, Plant Physiol., 87 (1988), pp. 443–446.

    Article  PubMed  CAS  Google Scholar 

  24. C.J. Walker and J.D. Weinstein, Proc. Nat’l. Acad. Sci. USA, 88 (1991), pp. 5789–5793.

    Article  ADS  CAS  Google Scholar 

  25. M.P. Leube et al., FEBS Lett., 424 (1998), pp. 100–104.

    Article  PubMed  CAS  Google Scholar 

  26. J.M. Sperrazza and L.L. Spremulli, Nucleic Acids Res., 11 (1983), pp. 2665–2679.

    Article  PubMed  CAS  Google Scholar 

  27. I. Cakmak et al., J. Exp. Bot., 45 (1994), pp. 1245–1250.

    Article  CAS  Google Scholar 

  28. I. Cakmak et al., J. Exp. Bot., 45 (1994), pp. 1251–1257.

    Article  CAS  Google Scholar 

  29. E.S. Fischer and E. Bremer, Physiol. Plantar, 89 (1993), pp. 271–276.

    Article  CAS  Google Scholar 

  30. H. Beringer and H. Forster, Z. Pflanzerenahr Bodenk., 114 (1981), pp. 8–15.

    Article  Google Scholar 

  31. E.S. Fischer et al., Physiol. Plantar, 102 (1998), pp. 16–20.

    Article  CAS  Google Scholar 

  32. D.E. Bottrill et al., Plant Soil, 32 (1970), pp. 424–438.

    Article  CAS  Google Scholar 

  33. Y.E. Troyanos et al., Plant Soil, 197 (1997), pp. 25–33.

    Article  CAS  Google Scholar 

  34. E.S. Fischer, Photosynthetica, 33 (1997), pp. 385–390.

    CAS  Google Scholar 

  35. M. Ridolfi and J.P. Garrec, Ann. Forestry Sci., 57 (2000), pp. 209–218.

    Article  Google Scholar 

  36. O.J. Sun et al., Trees, 15 (2001), pp. 335–340.

    Article  CAS  Google Scholar 

  37. D. Sanders et al., Plant Cell, 11 (1999), pp. 691–706.

    Article  PubMed  CAS  Google Scholar 

  38. P.J. White and M.R. Broadley, Ann. Bot., 92 (2003), pp. 487–511.

    Article  PubMed  CAS  Google Scholar 

  39. S. Shabala and T.A. Cuin, Physiol. Plantar, 133 (2008), pp. 651–669.

    Article  CAS  Google Scholar 

  40. S. Shabala et al., Plant Physiol., 141 (2006), pp. 1653–1665.

    Article  PubMed  CAS  Google Scholar 

  41. S. Shabala et al., Funct. Plant Biol., 30 (2003), pp. 507–514.

    Article  CAS  Google Scholar 

  42. M.D. Hatch and J.N. Burnell, Plant Physiol., 93 (1990), pp. 825–828.

    Article  PubMed  CAS  Google Scholar 

  43. G. Sandmann and P. Boger, Encyclopedia of Plant Physiol., 15A (1983), pp. 563–596.

    Google Scholar 

  44. I.E. Woodrow and J.A. Berry, Annual Rev. Plant Physiol. Plant Mol. Biol., 39 (1988), pp. 533–594.

    CAS  Google Scholar 

  45. J.R. Evans, Oecologia, 78 (1989), pp. 9–19.

    Article  Google Scholar 

  46. M. Stitt and D. Schulze, Plant Cell Environ., 17 (1994), pp. 465–487.

    Article  CAS  Google Scholar 

  47. S. von Caemmerer and R.T. Furbank, Photosynthesis Res., 77 (2003), pp. 191–203.

    Article  Google Scholar 

  48. T.J. Andrews and S.M. Whitney, Arch. Biochem. Biophys., 414 (2003), pp. 159–169.

    Google Scholar 

  49. A.F. Collings and C. Critchley, editors, Artificial Photosynthesis: From Basic Biology to Industrial Applications (Berlin: Wiley-VCH, 1990).

    Google Scholar 

  50. T. Collings, Artificial Photosynthesis, ABC Radio National: The Buzz (September 4, 2004), www.abc.net.au/rn/science/buzz/stories/s1191870/htm .

  51. R.J. Pace, Proc. 26th Annual Conf. Austral. Soc. Biophys. (Melbourne, Australia: Australian Society for Biophysics, 2002).

    Google Scholar 

  52. NRP submission 49 (2002), www.dest.gov.au/NR/rdonlyres/180718C2-EFDA-4D44-B195-730BF851E304/3195/pdf49p.pdf .

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Shabala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabala, S. Metal cations in CO2 assimilation and conversion by plants. JOM 61, 28–34 (2009). https://doi.org/10.1007/s11837-009-0048-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0048-0

Keywords

Navigation