Skip to main content
Log in

Processing for Highly Emissive CZ-Silicon by Depositing Stressed Sol–Gel Films

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Enhanced band-gap emission from Czochralski silicon substrates of up to ~100 times is reported. This was achieved by processing for a stressed interface resulting from baked and annealed silica films prepared by sol–gel processes. The active dopants include but are not limited to erbium and are prepared with tetraethylorthosilicate (TEOS) while forming the active precursors using oxide and nitrate forms of the rare earth. In addition, annealed films produce infrared emission in the 1.5-μm band from erbium ions in the film. Steady-state photoluminescence studies indicate that a strong correlation of the intensity of the emission at the band gap to the stress formed at the interface and is a direct function of the annealing temperature of the silica films, independent from the known erbium 4f emission bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Ferrari, Processing, Characterization, and Applications.Handbook of Sol–Gel Science and Technology, Vol. II, ed. S. Sakka (Norwell: Klewer Academic Publishers/Springer, 2005), pp. 359–389.

    Google Scholar 

  2. E. Desurvire, Erbium Doped Fiber Amplifiers: Principles and Applications (New York, NY: Wiley, 1994), pp. 207–305.

    Google Scholar 

  3. S. Abedrabbo, B. Lahlouh, and A.T. Fiory, J. Phys. D 44, 315401 (2011).

    Article  Google Scholar 

  4. S. Abedrabbo, B. Lahlouh, S. Shet, and A.T. Fiory, Scr. Mater. 65, 767 (2011).

    Article  Google Scholar 

  5. Q. Wang, N.K. Dutta, and R. Ahrens, J. Appl. Phys. 95, 4025 (2004).

    Article  Google Scholar 

  6. G.C. Righini, S. Pelli, M. Ferrari, C. Armellini, L. Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera, and S.J.L. Ribeiro, Opt. Quant. Electron. 34, 1151 (2002).

    Article  Google Scholar 

  7. X. Orignac, D. Barbier, X.M. Du, R.M. Almeida, O. McCarthy, and E. Yeatman, Opt. Mater. 12, 1 (1999).

    Article  Google Scholar 

  8. Q. Xiang, Y. Zhou, B.S. Ooi, Y.L. Lam, Y.C. Chan, and C.H. Kam, Thin Solid Films 370, 243 (2000).

    Article  Google Scholar 

  9. Y.Y. Hui, P.-H. Shih, K.-J. Sun, and C.-F. Lin, Thin Solid Films 515, 6754 (2007).

    Article  Google Scholar 

  10. C.K. Ryu, H. Choi, and K. Kim, Appl. Phys. Lett. 66, 2496 (1995).

    Article  Google Scholar 

  11. X. Orignac, D. Barbier, X.M. Du, and R.M. Almeida, Appl. Phys. Lett. 69, 895 (1996).

    Article  Google Scholar 

  12. L.H. Slooff, M.J.A. de Dood, A. van Blaaderen, and A. Polman, Appl. Phys. Lett. 76, 3682 (2000).

    Article  Google Scholar 

  13. L.H. Slooff, M.J.A. de Dood, A. van Blaaderen, and A. Polman, J Non-Cryst Solids 296, 158 (2001).

    Article  Google Scholar 

  14. K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants Diatomic Molecules (New York, NY: Van Nostrand Reinhold, 1979), p. 212.

    Book  Google Scholar 

  15. J.T. Kohli and J.E. Shelby, Phys. Chem. Glasses 32, 67 (1991).

    Google Scholar 

  16. J.E. Shelby and J.T. Kohli, J. Am. Ceram. Soc. 73, 39 (1990).

    Article  Google Scholar 

  17. A.J. Bruce, W.A. Reed, A.E. Neeves, L.R. Copeland, and W.H. Grodkiewicz, Proceedings of the Optical Waveguide MaterialsMaterials Research Soceity, (Pittsburgh, PA: MRS, 1992), pp. 157–161.

  18. S. Pal, A. Mandal, G. De, E. Trave, V. Bello, G. Mattei, P. Mazzoldi, and C. Sada, J. Appl. Phys. 108, 113116 (2010).

    Article  Google Scholar 

  19. S. Wolf, Silicon Processing for the VLSI Era, Process Technology, 2nd ed., Vol. 2 (Sunset Beach, CA: Lattice Press, 2000).

    Google Scholar 

  20. C.J. Brinker and G.W. Scherer, J. Non-Cryst. Solids 70, 301 (1985).

    Article  Google Scholar 

  21. A.C. Marques, R.M. Almeida, A. Chiasera, and M. Ferrari, J. Non-Cryst. Solids 322, 272 (2003).

    Article  Google Scholar 

  22. A. Polman, Physica B 300, 78 (2001).

    Article  Google Scholar 

  23. V.P. Gapontsev, S.M. Matitsin, A.A. Isineev, and V.B. Kravchenko, Opt. Laser Technol. 14, 189 (1982).

    Article  Google Scholar 

  24. S. Kondo, F. Fujiwara, and M. Muroya, J. Colloid Interface Sci. 55, 421 (1976).

    Article  Google Scholar 

  25. J.H. Anderson Jr and K.A. Wickersheim, Surf. Sci. 2, 25 (1964).

    Google Scholar 

  26. C.J. Brinker, G.W. Scherer, and E.P. Roth, J. Non-Cryst. Solids 72, 345 (1985).

    Article  Google Scholar 

  27. K.M. Davis and M. Tomozawa, J. Non-Cryst. Solids 185, 203 (1995).

    Article  Google Scholar 

  28. R. Wyatt, Fiber Laser Sources and Amplifiers (Proceedings of SPIE), Vol. 1171, ed. M.J.F. Digonnet (Bellingham, WA: SPIE, 1989), pp. 55–64.

    Google Scholar 

  29. Y.-W. Lu, B. Julsgaard, M.C. Petersen, R.V.S. Jensen, T.G. Pedersen, K. Pedersen, and A.N. Larsen, Appl. Phys. Lett. 97, 141903 (2010).

    Article  Google Scholar 

  30. G.W. Adeola, H. Rinnert, P. Miska, and M. Vergnat, J. Appl. Phys. 102, 053515 (2007).

    Article  Google Scholar 

  31. D.J. Lockwood, Light Emission in Silicon: From Physics to Devices, Semiconductors and Semimetals Series, ed. D.J. Lockwood (Chestnut Hill, MA: Academic Press, 1998), pp. 1–35.

    Google Scholar 

  32. O. King and D.G. Hall, Phys. Rev. B 50, 10661 (1994).

    Article  Google Scholar 

  33. L. Pavesi and D. Lockwood, Silicon Photonics, Topics in Applied Physics, Vol. 94 (Berlin, Germany: Springer, 2004).

    Google Scholar 

  34. G. Weiser, S. Kazitsyna-Baranovski, and R. Stangl, J. Mater. Sci. 18, S93 (2007).

    Google Scholar 

  35. P. Innocenzi, J. Non-Cryst. Solids 316, 309 (2003).

    Article  Google Scholar 

  36. T.M. Parrill, J. Mater. Res. 9, 723 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

Support offered by The University of Jordan and the Deanship of Academic Research the University are gratefully acknowledged. The authors would like to acknowledge the support of Bashar Lahlouh of The University of Jordan and Sudhakar Shet previously from the National Renewable Energy Laboratory for their valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abedrabbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abedrabbo, S., Fiory, A.T. & Ravindra, N.M. Processing for Highly Emissive CZ-Silicon by Depositing Stressed Sol–Gel Films. JOM 66, 643–648 (2014). https://doi.org/10.1007/s11837-014-0922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0922-2

Keywords

Navigation