Skip to main content
Log in

Femtosecond pulse shaping with plasmonic crystals

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The temporal shaping of femtosecond laser pulses reflected from a one-dimensional plasmonic crystal using a commercially available polymer grating coated with a silver film is experimentally demonstrated by timeresolved measurements of the intensity correlation function. Shaping is achieved by the excitation of surface plasmon-polaritons with a lifetime comparable to the 130 fs laser pulse duration. The variety of data obtained demonstrate the flexible shaping of fs-pulses by delaying, advancing, splitting, broadening, compressing, and changing the topological properties of the pulse with the plasmonic crystals under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sharan and D. Goswami, Curr. Sci. 82, 30 (2002).

    Google Scholar 

  2. A. M. Weiner, Opt. Commun. 284, 3669 (2011).

    Article  ADS  Google Scholar 

  3. Y. Silberberg, Annu. Rev. Phys. Chem. 60, 277 (2009).

    Article  ADS  Google Scholar 

  4. F. Frei, A. Galler, and T. Feurer, J. Chem. Phys. 130, 034302 (2009).

    Article  ADS  Google Scholar 

  5. D. Goswami, Phys. Rep. 374, 385 (2003).

    Article  ADS  Google Scholar 

  6. A. M. Weiner, Y. Silberberg, H. Fouckhardt, D.E. Leaird, M. A. Saifi, M. J. Andrejco, and P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).

    Article  ADS  Google Scholar 

  7. G. Tearney, M. Brezinski, B. Bouma, S. Boppart, C. Pitris, J. Southern, and J. Fujimoto, Science 276, 2037 (1997).

    Article  Google Scholar 

  8. F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J. Wolf, Appl. Phys. Lett. 87, 063901 (2005).

    Article  ADS  Google Scholar 

  9. A. M. Weiner, Z. Jiang, and D. E. Leaird, J. Opt. Netw. 6, 728 (2007).

    Article  Google Scholar 

  10. L. Boivin, M. Wegmueller, M. Nuss, and W. Knox, IEEE Photon. Technol. Lett. 11, 466 (1999).

    Article  ADS  Google Scholar 

  11. E. Palushani, L. Oxenlowe, M. Galili, H. Mulvad, A. Clausen, and P. Jeppesen, IEEE J. Quantum Electron. 45, 1317 (2009).

    Article  ADS  Google Scholar 

  12. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).

    Article  ADS  Google Scholar 

  13. A. Monmayrant and B. Chatel, Rev. Sci. Instrum. 75, 2668 (2004).

    Article  ADS  Google Scholar 

  14. T. Mansuryan, M. Kalashyan, J. Lhermite, E. Suran, V. Kermene, A. Barthelemy, and F. Louradour, Opt. Lett. 36, 1635 (2011).

    Article  ADS  Google Scholar 

  15. D. Leaird and A. Weiner, Opt. Lett. 24, 853 (1999).

    Article  ADS  Google Scholar 

  16. A. Vega, D. Leaird, and A. Weiner, Opt. Lett. 35, 1554 (2010).

    Article  ADS  Google Scholar 

  17. G. Dolling, C. Enkrich, M. Wegener, C. Soukoulis, and S. Linden, Science 312, 892 (2006).

    Article  ADS  Google Scholar 

  18. V. Fedorov and T. Nakajima, Phys. Rev. Lett. 107, 143903 (2011).

    Article  ADS  Google Scholar 

  19. R. Andaloro, H. Simon, and R. Deck, Appl. Opt. 33, 6340 (1994).

    Article  ADS  Google Scholar 

  20. A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, Opt. Lett. 26, 450 (2001).

    Article  ADS  Google Scholar 

  21. D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, Phys. Rev. Lett. 91, 143901 (2003).

    Article  ADS  Google Scholar 

  22. P. P. Vabishchevich, V. O. Bessonov, F. Y. Sychev, M. R. Shcherbakov, T. V. Dolgova, and A. A. Fedyanin, JETP Lett. 92, 575 (2011).

    Article  ADS  Google Scholar 

  23. M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. I. Panov, V. V. Moshchalkov, and A. A. Fedyanin, Phys. Rev. Lett. 108, 253903 (2012).

    Article  ADS  Google Scholar 

  24. P. P. Vabishchevich, A. Y. Frolov, M. R. Shcherbakov, A. A. Grunin, T. V. Dolgova, and A. A. Fedyanin, J. Appl. Phys. 113, 17A947 (2013).

  25. M. R. Shcherbakov, P. P. Vabishchevich, A. Y. Frolov, T. V. Dolgova, and A. A. Fedyanin, Phys. Rev. B 90, 201405(R) (2014).

  26. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996).

    Article  ADS  Google Scholar 

  27. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, Appl. Phys. Lett. 79, 1076 (2001).

    Article  ADS  Google Scholar 

  28. A. Vengurlekar, A. Gopal, and T. Ishihara, Appl. Phys. Lett. 89, 181927 (2006).

    Article  ADS  Google Scholar 

  29. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, Phys. Rev. Lett. 94, 113901 (2005).

    Article  ADS  Google Scholar 

  30. E. Fontana, Appl. Opt. 43, 79 (2004).

    Article  ADS  Google Scholar 

  31. A. A. Grunin, A. V. Chetvertukhin, T. V. Dolgova, A. A. Ezhov, and A. A. Fedyanin, J. Appl. Phys. 113, 17A946 (2013).

  32. U. Fano, Ann. Phys. 424, 393 (1938).

    Article  Google Scholar 

  33. C. Genet, M. P. van Exter, and J. P. Woerdman, Opt. Commun. 225, 331 (2003).

    Article  ADS  Google Scholar 

  34. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fedyanin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vabishchevich, P.P., Shcherbakov, M.R., Bessonov, V.O. et al. Femtosecond pulse shaping with plasmonic crystals. Jetp Lett. 101, 787–792 (2015). https://doi.org/10.1134/S0021364015120140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015120140

Keywords

Navigation