Skip to main content
Log in

Measurements of Heat Capacity of Pure Titanium and Zirconium by Electromagnetic Levitation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The heat capacity of titanium and zirconium was measured in the temperature range from approximately 1,300 K to 1,800 K . The measurement technique is based on the modulated power method originally proposed by Fecht and Johnson. The heat capacity of a sample can be derived from the sample’s temperature response to the modulated electromagnetic heating power if the sample’s total hemispherical emissivity is known. The experiments were performed using an electromagnetic levitator. The solid titanium and zirconium samples were suspended in the center of an induction coil with a very small diameter (0.15 mm) Pt (87 %)-Rh (13 %) wire. The heat capacity measurements of titanium and zirconium are presented, and the uncertainty is estimated to be ±3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sullivan P.F., Seidel G.: Phys. Rev. 173, 679 (1968)

    Article  ADS  Google Scholar 

  2. Bachmann R., DiSalvo F.J. Jr., Geballe T.H., Greene R.L., Howard R.E., King C.N., Kirsch H.C., Lee K.N., Schwall R.E.: Rev. Sci. Instrum. 43, 205 (1972)

    Article  ADS  Google Scholar 

  3. Fecht H.J., Johnson W.L.: Rev. Sci. Instrum. 62, 1299 (1991)

    Article  ADS  Google Scholar 

  4. Wunderlich R.K., Fecht H.J.: J. Non-Cryst. Solids 156-158, 421 (1993)

    Article  ADS  Google Scholar 

  5. Fecht H.J., Wunderlich R.K.: Mat. Sci. Eng. A: Struct. Mat.: Props., Microstruct. Process. 178, 61 (1994)

    Google Scholar 

  6. R.K. Wunderlich, A. Diefenbach, R. Willnecker, H.J. Fecht, “Principles of non-contact a.c. calorimetry,” containerless process. Tech. Appl., in Proceedings of 5th Int. Symp. Exp. Methods Mater. Sci. Res. (1993), pp. 51–56

  7. R.K. Wunderlich, C. Ettl, H.J. Fecht, Spec. Pub. SP-454 (European Space Agency, 2001), pp. 537–544

  8. Wunderlich R.K., Lee D.S., Johnson W.L., Fecht H.J.: Phys. Rev. B: Condens. Mater. 55, 26 (1997)

    ADS  Google Scholar 

  9. Wunderlich R.K., Fecht H.J.: Int. J. Thermophys. 17, 1203 (1996)

    Article  Google Scholar 

  10. Wroughton D.M., Okress E.C., Brace P.H., Comenetz G., Kelly J.C.R.: J. Electrochem. Soc. 99, 205 (1952)

    Article  Google Scholar 

  11. Egry I., Lohoefer G., Sauerland S.: Int. J. Thermophys. 14, 573 (1993)

    Article  Google Scholar 

  12. Egry I., Diefenbach A., Dreier W., Piller J.: Int. J. Thermophys. 22, 569 (2001)

    Article  Google Scholar 

  13. Wunderlich R.K., Ettl C., Fecht H.J.: Int. J. Thermophys. 22, 579 (2001)

    Article  Google Scholar 

  14. Wang D., Guo B., Overfelt R.A.: AFS Trans. 111, 813 (2003)

    Google Scholar 

  15. Chen S.F., Overfelt R.A.: Int. J. Thermophys. 19, 817 (1998)

    Article  Google Scholar 

  16. Okress E.C., Wroughton D.M., Comentz G., Brace P.H., Kelly J.C.R.: J. Appl. Phys. 23, 545 (1952)

    Article  ADS  Google Scholar 

  17. Fromm E., Jehn H.: Brit. J. Appl. Phys. 16, 653 (1965)

    Article  ADS  Google Scholar 

  18. Xuan X., Levitation and Surface Tension Measurement of Materials by Electromagnetic Levitation (M. S. Thesis, Auburn University, Auburn, AL, 2000), pp.12–27

  19. G. Teodorescu, P.D. Jones, R.A. Overfelt, B. Guo, Presented at Materials Science & Technology Conference and Exhibition, Pittsburgh, PA (2005)

  20. Maglic K.D., Pavicic D.Z.: Int. J. Thermophys. 22, 1833 (2001)

    Article  Google Scholar 

  21. Boboridis K.: Int. J. Thermophys. 23, 277 (2002)

    Article  Google Scholar 

  22. Kaschnitz E., Reiter P.: J. Therm. Anal. Calorim. 64, 351 (2001)

    Article  Google Scholar 

  23. Paradis P., Rhim W.: J. Chem. Thermodyn. 32, 123 (2000)

    Article  Google Scholar 

  24. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, OH, 1973), pp. 575–581

  25. Cezairliyan A., Righini F.: J. Res. Natl. Bur. Stand.-A. Phys. Chem. 78 A, 509 (1974)

    Google Scholar 

  26. C.B. Alcock, K.T. Jakob, S. Zador, Thermochemical Properties, ed. by O. Kubaschewski, Atomic Energy Review Special Issue, No. 6 (International Atomic Energy Agency, Vienna 1976), pp. 5–65

  27. Moffat R.J.: Exp. Therm. Fluid Sci. 1, 3 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruel A. Overfelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, B., Teodorescu, G., Overfelt, R.A. et al. Measurements of Heat Capacity of Pure Titanium and Zirconium by Electromagnetic Levitation. Int J Thermophys 29, 1997–2005 (2008). https://doi.org/10.1007/s10765-008-0526-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-008-0526-6

Keywords

Navigation