Skip to main content
Log in

Expression and localization of Lewisx glycolipids and GD1a ganglioside in human glioma cells

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We analysed the glycolipid composition of glioma cells (N-370 FG cells), which are derived from a culture of transformed human fetal glial cells. The neutral and acidic glycolipid fractions were isolated by column chromatography on DEAE-Sephadex and analysed by high-performance thin-layer chromatography (HPTLC). The neutral glycolipid fraction contained 1.6 µg of lipid-bound glucose/galactose per mg protein and consisted of GlcCer (11.4% of total neutral glycolipids), GalCer (21.5%), LacCer (21.4%), Gb4 (21.1%), and three unknown neutral glycolipids (23%). These unknown glycolipids were characterized as Lewisx (fucosylneolactonorpentaosyl ceramide; Lex), difucosylneolactonorhexaosyl ceramide (dimeric Lex), and neolactonorhexaosyl ceramide (nLc6) by an HPTLC-overlay method for glycolipids using specific mouse anti-glycolipid antibodies against glycolipid and/or liquid-secondary ion (LSI) mass spectrometry. The ganglioside fraction contained 0.6 µg of lipid-bound sialic acid per mg protein with GD1a as the predominant ganglioside species (83% of the total gangliosides) and GM3, GM2, and GM1 as minor components. Trace amounts of sialyl-Lex and the complex type of sialyl-Lex derivatives were also present. Immunocytochemical studies revealed that GD1a and GalCer were primarily localized on the surface of cell bodies. Interestingly, Lex glycolipids and sialyl-Lex were localized not only on the cell bodies but also on short cell processes. Especially, sialyl-Lex glycolipid was located on the tip of fine cellular processes. The unique localization of the Lex glycolipids suggests that they may be involved in cellular differentiation and initiation of cellular growth in this cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hakomori S-i (1994) InGlycobiology and the Brain, (Nicolini M, and Zatta PF eds) pp. 83–96, Oxford: Pergamon Press.

    Google Scholar 

  2. Yu RK (1994)Prog Brain Res 101: 31–44.

    Google Scholar 

  3. Hakomori S-i, Kannagi R (1983)J Natl Cancer Inst 71: 231–51.

    Google Scholar 

  4. Ledeen RW, Wu G (1992)Trends Glycosci Glycotech 4: 174–87.

    Google Scholar 

  5. Ariga T, Kobayashi K, Kuroda Y, Yu RK, Suzuki M, Kitagawa H, Inagaki F, Miyatake T (1987)J Biol Chem 262: 14146–53.

    Google Scholar 

  6. Ariga T, Yoshida K, Nemoto K, Seki M, Miyatani N, Yu RK (1991)Biochemistry 30: 7953–61.

    Google Scholar 

  7. Hakomori S-i (1985)Cancer Res 45: 2405–14.

    Google Scholar 

  8. Kyogashima M, Mulshine J, Linnoila R, Jensen S, Magnani JL, Nudelman E, Hakomori S-i, Ginsburg V (1989)Arch Biochem Biophys 275: 309–14.

    Google Scholar 

  9. Fukushi Y, Kannagi R, Hakomori S-i, Shepard T, Kulander BG, Singer JW (1985)Cancer Res 45: 3711–17.

    Google Scholar 

  10. Fukushi Y, Orikasa S, Shepard T, Hakomori S-i (1986)J Urol 135: 1048–56.

    Google Scholar 

  11. Zenita K, Kirihata Y, Kirihata A, Shigeta K, Higuchi K, Hirashima K, Murachi T, Miyake M, Takeda T, Kannagi R (1988)Int J Cancer 41: 344–49.

    Google Scholar 

  12. Solter D, Knowles BB (1978)Proc Natl Acad Sci USA 75: 5565–69.

    Google Scholar 

  13. Ariga T, Tao RV, Lee B-C, Yamawaki M, Yoshino H, Scarsdale NJ, Kasama T, Kushi Y, Yu RK (1994)J Biol Chem 269: 2667–75.

    Google Scholar 

  14. Ariga T, Murata T, Oshima M, Maesawa M, Miyatake T (1980)J Lipid Res 21: 879–87.

    Google Scholar 

  15. Ren S-L, Scarsdale NJ, Ariga T, Zhang Y-J, Klein RA, Hartmann R, Kushi Y, Egge H, Yu RK (1992)J Biol Chem 267: 12632–38.

    Google Scholar 

  16. Vance DE, Sweeley CC (1967)J Lipid Res 8: 621–27.

    Google Scholar 

  17. Saito M, Kasai N, Yu RK (1985)Anal Biochem 148: 54–58.

    Google Scholar 

  18. Hirabayashi Y, Koketsu K, Higashi H, Suzuki Y, Matsumoto M, Sugimoto M, Ogawa T (1986)Biochim Biophys Acta 876: 178–82.

    Google Scholar 

  19. Kasama T, Handa S (1991)Biochemistry 30: 5621–24.

    Google Scholar 

  20. Yoshino H, Ariga T, Latov N, Miyatake T, Kushi Y, Kasama T, Handa S, Yu RK (1993)J Neurochem 61: 658–63.

    Google Scholar 

  21. Kotani M, Kawashima I, Osawa H, Ogura K, Ariga T, Tai T (1994)Arch Biochem Biophys 310: 89–96.

    Google Scholar 

  22. Kanda T, Ariga T, Yamawaki M, Pal S, Katoh-Semba R, Yu RK (1995)J Neurochem 64: 810–17.

    Google Scholar 

  23. Marani E, Van Oers JWAM, Tetteroo PAT, Poelmann RE, Van Der Veeken J, Deenen MGM (1986)Acta Morphol Neerl-Scand 24: 103–10.

    Google Scholar 

  24. Tippett P, Andrews PW, Knowles BB, Solter D, Goodfellow PN (1986)Vox Sang 51: 53–56.

    Google Scholar 

  25. Felding-Habermann B, Jennemann R, Schmitt J, Wiegandt H (1986)Eur J Biochem 160: 651–58.

    Google Scholar 

  26. Yates A (1988)Neurochem Pathol 8: 157–80.

    Google Scholar 

  27. He X, Wikstrand CJ, Fredman P, Mansson J-E, Svennerholm L, Bigner DD (1989)Acta Neuropathol 79: 317–25.

    Google Scholar 

  28. Markovic I, Heffer M, Rogan-Grgas J, Vladovic-Relja, Kracun G, Cosovic C, Kracun I (1988)Periodicum Biologorum 90: 97–104.

    Google Scholar 

  29. Yates AJ, Thompson DK, Boesel CP, Albrightson C, Hrart RW (1979)J Lipid Res 20: 428–36.

    Google Scholar 

  30. Kostic D, Bucheit F (1970)Life Sci 9: 589–96.

    Google Scholar 

  31. Gottfries J, Fredman P, Mansson J-E, Collins VP, von Holst H, Armstrong PD, Percy AK, Wikstrand C, Bigner DD, Svennerholm L (1990)J Neurochem 55: 1322–26.

    Google Scholar 

  32. Cheresh DA, Pierschacher MD, Herzig MA, Mujoo K (1986)J Cell Biol 102: 688–96.

    Google Scholar 

  33. Davidsson P, Fredman P, Collins VP, von Holst H, Mansson J-E, Svennerholm L (1989)J Neurochem 53: 705–9.

    Google Scholar 

  34. Sung C-C, Pearl DK, Coons SW, Scheithauer BW, Johnson PC, Yates AJ (1994)Cancer 74: 3010–22.

    Google Scholar 

  35. Fredman P, von Holst H, Collins VP, Dellheden B, Svennerholm L (1993)J Neurochem 60: 99–105.

    Google Scholar 

  36. Fredman P, Dumanski J, Davidsson P, Svennerholm L, Collins VP (1990)J Neurochem 55: 1838–40.

    Google Scholar 

  37. Fredman P (1988) InNew Trends in Ganglioside Research. Neurochemical and Neuroregenerative Aspects, (Ledeen RW, Hogan EL, Tettamanti G, Yates AJ, Yu RK eds) pp. 151–62. New York: Liviana Press, Springer Verlag.

    Google Scholar 

  38. Fredman P, Mansson J-E, Bigner SH, Wikstrand CJ, Bigner DD, Svennerholm L (1990)Biochim Biophys Acta 1045: 239–44.

    Google Scholar 

  39. Yang HJ, Hakomori S-i (1971)J Biol Chem 246: 1192–1200.

    Google Scholar 

  40. Hakomori S-i, Nudelmann E, Levery SB, Kannagi R (1984)J Biol Chem 259: 4672–80.

    Google Scholar 

  41. Rauvala H (1976)J Biol Chem 251: 7517–20.

    Google Scholar 

  42. Gooi H, Feizi T, Kapadia A, Knowles BB, Solter D, Evans JM (1981)Nature 292: 156–58.

    Google Scholar 

  43. Hakomori S-i, Nudelman E, Levery S, Solter D, Knowles BB (1981)Biochem Biophys Res Commun 100: 1578–86.

    Google Scholar 

  44. Fenderson BA, Holmes EH, Fukushi Y, Hakomori S-i (1986)Devel Biol 114: 12–21.

    Google Scholar 

  45. Kasai N, Sillerud LO, Yu RK (1986)Lipids 17: 107–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariga, T., Bhat, S., Kanda, T. et al. Expression and localization of Lewisx glycolipids and GD1a ganglioside in human glioma cells. Glycoconjugate J 13, 135–145 (1996). https://doi.org/10.1007/BF00731487

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731487

Keywords

Navigation