Skip to main content
Log in

Rapid oscillatory quintessence with variable equation of state parameter in non minimal derivative coupling model

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The rapid oscillating scalar field is considered as the quintessence in the framework of nonminimal kinetic coupling model. The scalar field behaves like a perfect fluid with a variable equation of state parameter which can be expressed as a function of the Hubble parameter. This feature enables us to study its evolution via continuity equation. The scalar field may behave as dark energy in the present epoch, while it behaves like dark matter in the future. This characteristic allows the occurrence of a decelerated expansion after the present acceleration, without invoking any interaction. The model is also studied in the presence of an interaction between dark sectors alleviating the coincidence problem. The stability of the model is investigated and the stable attractor solutions are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Indeed within a period, some of the parameters such as \(P_\varphi \) are different from their average values.

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Nature (London) 391, 51 (1998)

    Article  ADS  Google Scholar 

  3. Garnavich, P.M., et al.: Astrophys. J. 509, 74 (1998)

    Article  ADS  Google Scholar 

  4. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. 15, 1753 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Amendola, L., Tsujikawa, Sh: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  6. De Felice, A., Tsujikawa, Sh: Living Rev. Rel. 13, 3 (2010)

    Google Scholar 

  7. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Carroll, S.M.: Living Rev. Rel. 4, 1 (2001)

    Google Scholar 

  10. Peebles, P., Rarta, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MATH  Google Scholar 

  11. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Zlatev, I., Wang, L., Steinhardt, P.J.: Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  13. Linder, E.V.: Gen. Relativ. Gravit. 40, 329 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Caldwell, R., Linder, E.V.: Phys. Rev. Lett. 95, 141301 (2005)

    Article  ADS  Google Scholar 

  15. Sushkov, S.V.: Phys. Rev. D 80, 103505 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Sadjadi, H.M.: Phys. Rev. D 83, 107301 (2011)

    Article  ADS  Google Scholar 

  17. Skugoreva, M.A., Sushkov, S.V., Toporensky, A.V.: Phys. Rev. D 88, 083539 (2013)

    Article  ADS  Google Scholar 

  18. Sushkov, S.: Phys. Rev. D 85, 123520 (2012)

    Article  ADS  Google Scholar 

  19. Granda, L.N.: Class. Quantum Gravity 28, 025006 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. Banijamali, A., Fazlpour, B.: JCAP 01, 039 (2012)

    Article  ADS  Google Scholar 

  21. Gubitosi, G., Linder, E.V.: Phys. Lett. B 703, 113 (2011)

    Article  ADS  Google Scholar 

  22. Linder, E.V.: arXiv:1310.7597 [astro-ph.CO]

  23. Jinno, R., Mukaida, K., Nakayama, K.: arXiv:1309.6756 [astro-ph.CO]

  24. Ghalee, A.: Phys. Rev. D 88, 083528 (2013)

    Article  ADS  Google Scholar 

  25. Koutsoumbas, G., Ntrekis, K., Papantonopoulos, E.: arXiv:1305.5741 [gr-qc]

  26. Feng, K., Qiu, T., Piao, Y.S.: arXiv:1307.7864 [hep-th]

  27. Damour, T., Mukhanov, V.F.: Phys. Rev. Lett 80, 3440 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Lidle, A.R., Mazumdar, A.: Phys. Rev. D 58, 083508 (1998)

    Article  ADS  Google Scholar 

  29. Gu, J.A.: arXiv:0711.3606 [astro-ph]

  30. Dutta, S., Scherrer, R.J.: Phys. Rev. D 78, 083512 (2008)

    Article  ADS  Google Scholar 

  31. Lima, N.A., Viana, P.T.P., Tereno, I.: arXiv:1305.0761 [astro-ph.CO]

  32. Sadjadi, H.M., Goodarzi, P.: JCAP 02, 038 (2013). arXiv:1203.1580 [gr-qc]

    Article  MathSciNet  Google Scholar 

  33. Sadjadi, H.M., Goodarzi, P.: JCAP 07, 039 (2013). arXiv:1302.1177 [gr-qc]

    Article  Google Scholar 

  34. Sadjadi, H.M., Goodarzi, P.: arXiv:1309.2932 [astro-ph.CO]

  35. Shtanov, Y., Traschen, J., Brandenberger, R.: Phys. Rev. D 51, 5438 (1995)

    Article  ADS  Google Scholar 

  36. Turner, M.: Phys. Rev. D 28, 1243 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  37. Kolb, E., Turner, M.: The Early Universe. Addison-Wesley Publishing Company, Redwood City (1990)

    MATH  Google Scholar 

  38. Albresht, A., Steinhardt, P.J., Turner, M.S., Wilczek, F.: Phys. Rev. Lett. 48, 1437 (1982)

    Article  ADS  Google Scholar 

  39. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  40. Valiviita, J., Majerotto, E., Maartens, R.: JCAP 0807, 020 (2008)

    Article  ADS  Google Scholar 

  41. Clemson, T., Koyama, K., Zhao, G., Maartens, R., Valiviita, J.: Phys. Rev. D 85, 043007 (2012)

    Article  ADS  Google Scholar 

  42. Valiviita, J., Maartens, R., Majerotto, E.: Mon. Not. R. Astron. Soc. 402, 2355 (2010)

    Article  ADS  Google Scholar 

  43. Ade, P.A.R., et al.: Planck 2013 results. XVI, arXiv: 1303.5076 [astro-ph] (2013)

  44. Pettorino, V.: Phys. Rev. D 88, 063519 (2013)

    Article  ADS  Google Scholar 

  45. Chevalier, M., Polarski, D.: Int. J. Mod. Phys. D 10, 213 (2001)

  46. Linder, E.V.: Phys. Rev. Lett. 90, 91301 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mohseni Sadjadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadjadi, H.M. Rapid oscillatory quintessence with variable equation of state parameter in non minimal derivative coupling model. Gen Relativ Gravit 46, 1817 (2014). https://doi.org/10.1007/s10714-014-1817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1817-9

Keywords

Navigation