Skip to main content
Log in

Analysis and treatment of errors due to high velocity gradients in particle image velocimetry

  • Original Paper
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper deals with errors occurring in two-dimensional cross-correlation particle image velocimetry (PIV) algorithms (with window shifting), when high velocity gradients are present. A first bias error is due to the difference between the Lagrangian displacement of a particle and the real velocity. This error is calculated theoretically as a function of the velocity gradients, and is shown to reach values up to 1 pixel if only one window is translated. However, it becomes negligible when both windows are shifted in a symmetric way. A second error source is linked to the image pattern deformation, which decreases the height of the correlation peaks. In order to reduce this effect, the windows are deformed according to the velocity gradients in an iterative process. The problem of finding a sufficiently reliable starting point for the iteration is solved by applying a Gaussian filter to the images for the first correlation. Tests of a PIV algorithm based on these techniques are performed, showing their efficiency, and allowing the determination of an optimum time separation between images for a given velocity field. An application of the new algorithm to experimental particle images containing concentrated vortices is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a
Fig. 2.
Fig. 3. a
Fig. 4.
Fig. 5. a
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9a–c.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  • Adrian RJ (1988) Statistical properties of particle image velocimetry measurements in turbulent flow. In: Adrian RJ et al. (eds) Laser anemometry in fluid mechanics—III. LADOAN Instituto Superior Tecnico, Lisbon, pp 115–129

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–604

    Article  Google Scholar 

  • Fincham A, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp Fluids [Suppl] 29:S13–S22

  • Fincham AM, Spedding GR (1997) Low cost, high resolution DPIV for measurement of turbulent fluid. Exp Fluids 23:449–462

    Article  Google Scholar 

  • Hart DP (2000) PIV error correction. Exp Fluids 29:13–22

    Article  Google Scholar 

  • Huang HT, Fiedler HE, Wang JJ (1993a) Limitation and improvement of PIV Part I: Limitation of conventional techniques due to deformation of image patterns. Exp Fluids 15:168–174

    CAS  Google Scholar 

  • Huang HT, Fiedler HE, Wang JJ (1993b) Limitation and improvement of PIV Part II: Particle image distortion, a novel technique. Exp Fluids 15:263–273

    CAS  Google Scholar 

  • Ishikawa M, Murai Y, Wada A, Iguchi M (2000) A novel algorithm for particle tracking velocimetry using the velocity gradient tensor. Exp Fluids 29:519–531

    Article  Google Scholar 

  • Jambunathan K, Ju XY, Dobbins BN, Ashforth-Frost S (1995) An improved cross correlation technique for particle image velocimetry. Meas Sci Technol 6:507–514

    CAS  Google Scholar 

  • Leweke T, Meunier P, Laporte F, Darracq D (2001) Controlled interactions of co-rotating vortices. In: Bütefisch K et al (eds) 3rd ONERA-DLR Aerospace Symposium (ODAS 2001). ONERA, Paris, paper S2-3

  • Lin HJ, Perlin M (1998) Improved methods for thin surface boundary layer investigations. Exp Fluids 25:431–444

    CAS  Google Scholar 

  • Meunier P, Leweke T (2001) Three-dimensional instability during vortex merging. Phys Fluids 13:2747–2750

    CAS  Google Scholar 

  • Meunier P, Leweke T (2003) Elliptic instability of a co-rotating vortex pair. J Fluid Mech in press

  • Meunier P, Ehrenstein U, Leweke T, Rossi M (2002) A merging criterion for two-dimensional co-rotating vortices. Phys Fluids 14:2757–2766

    CAS  Google Scholar 

  • Nogueira J, Lecuona A, Rodriguez PA (1999) Local field correction PIV: on the increase of accuracy of digital PIV systems. Exp Fluids 27:107–116

    Article  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Scarano F, Riethmuller ML (1998) Advances in iterative multigrid PIV image processing. Exp Fluids [Suppl] 29:S51–S60

  • Wereley ST, Meinhart CD (2001) Second-order accurate particle image velocimetry. Exp Fluids 31:258–268

    Article  Google Scholar 

  • Westerweel J (1993) Digital particle image velocimetry. PhD Thesis, Technical University Delft.

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Leweke.

Appendix

Appendix

We seek an expression for the displacement Δr=r fr i of a particle in the velocity field given by Eq. (3). At t=t i, the particle is located at r i, and at t=t f at r f. The origin of time (t=0) is given by the time at which one wishes to determine the velocity at the reference point 0 (of coordinates r=0). All derivatives are taken at this point and time. The particle trajectory r(t) is calculated by an iterative process as successive solutions of the differential equation

$$ \frac{{{\text{d}}{\mathbf{r}}}} {{{\text{d}}t}} = {\mathbf{\nu }}{\left[ {{\mathbf{r}}{\left( t \right)}} \right]} $$
(32)

at increasing orders of t and r.

At first order, the solution r 1(t) of Eq. (32) [using Eq. (3) taken at order 0] is given by:

$$ {\mathbf{r}}_{1} {\left( t \right)} = {\mathbf{r}}_{{\text{i}}} + {\int_{t_{{\text{i}}} }^t {{\mathbf{\nu }}_{0} {\text{d}}{t}' = {\mathbf{r}}_{{\text{i}}} + {\mathbf{\nu }}_{0} (t - t_{{\text{i}}} )} } $$
(33)

Introducing this result into (3) leads, at first order, to:

$$ \frac{{{\text{d}}{\mathbf{r}}}} {{{\text{d}}t}} = {\mathbf{\nu }}{\left[ {{\mathbf{r}}_{1} {\left( t \right)}} \right]} = {\mathbf{\nu }}_{0} + {\mathbf{{\nu }'}}{\left( {{\mathbf{r}}_{{\text{i}}} + {\mathbf{v}}_{0} t} \right)} + t\partial _{{\text{t}}} {\mathbf{\nu }} $$
(34)

The solution of Eq. (34) is the approximation r 2(t) of the trajectory to the second order:

$$ {\mathbf{r}}_{2} {\left( t \right)} = {\mathbf{r}}_{{\text{i}}} + {\mathbf{v}}_{0} {\left( {t - t_{{\text{i}}} } \right)} + \frac{{t^{2} - t^{2}_{{\text{i}}} }} {2}\partial _{{\text{t}}} {\mathbf{\nu }} + {\mathbf{{\nu }'r}}_{{\text{i}}} {\left( {t - t_{{\text{i}}} } \right)} + {\mathbf{{\nu }'\nu }}_{0} \frac{{{\left( {t - t_{{\text{i}}} } \right)}^{2} }} {2} $$
(35)

The third-order approximation r 3(t) of the particle trajectory is found in the same way, the final result being

$$ \begin{array}{*{20}l} {{{\mathbf{r}}_{3} {\left( t \right)}} \hfill} & { = \hfill} & {{{\mathbf{r}}_{{\text{i}}} + {\int_{t_{{\text{i}}} }^t {\mathbf{v}} }{\left[ {{\mathbf{r}}_{{\text{2}}} {\left( {{t}'} \right)}} \right]}{\text{d}}{t}'} \hfill} \\ {{} \hfill} & { = \hfill} & {{{\mathbf{r}}_{{\text{i}}} + {\mathbf{v}}_{0} {\left( {t - t_{{\mathbf{i}}} } \right)} + {\mathbf{{v}'}}{\text{r}}_{2} {\left( {t - t_{{\text{i}}} } \right)}} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + {\mathbf{{v}'v}}_{0} \frac{{{\left( {t - t_{{\text{i}}} } \right)}^{2} }} {2} + {\mathbf{{v}'}}\partial _{{\text{t}}} {\mathbf{v}}{\left[ {\frac{{t^{3} - t^{3}_{{\text{i}}} }} {6} - \frac{{t^{2}_{{\text{i}}} }} {2}{\left( {t - t_{{\text{i}}} } \right)}} \right]} + {\mathbf{{v}'}}^{2} {\mathbf{r}}_{{\text{i}}} \frac{{{\left( {t - t_{{\text{i}}} } \right)}^{2} }} {2} + {\mathbf{{v}'}}^{2} {\mathbf{v}}_{0} \frac{{{\left( {t - t_{{\text{i}}} } \right)}^{3} }} {6}} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + \partial _{{\text{t}}} {\mathbf{v}}\frac{{t^{2} - t^{2}_{{\text{i}}} }} {2} + {\left( {\begin{array}{*{20}c} {{{\text{r}}^{\dag }_{{\text{i}}} {\mathbf{{v}'}}_{x} {\mathbf{r}}_{{\text{i}}} }} \\ {{{\text{r}}^{\dag }_{i} {\mathbf{{v}''}}_{y} {\mathbf{r}}_{{\text{i}}} }} \\ \end{array} } \right)}\frac{{t - t_{{\text{i}}} }} {2}} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + {\left( {\begin{array}{*{20}l} {{{\mathbf{v}}^{\dag }_{{\text{0}}} } \hfill} & {{{\mathbf{{v}''}}_{x} } \hfill} & {{{\mathbf{r}}_{{\text{i}}} + {\mathbf{r}}^{\dag }_{{\text{i}}} } \hfill} & {{{\mathbf{{v}''}}_{x} } \hfill} & {{{\mathbf{v}}_{0} } \hfill} \\ {{{\mathbf{v}}^{\dag }_{{\text{0}}} } \hfill} & {{{\mathbf{{v}''}}_{{\text{y}}} } \hfill} & {{{\mathbf{r}}_{{\text{i}}} + {\mathbf{r}}^{\dag }_{{\text{i}}} } \hfill} & {{{\mathbf{{v}''}}_{y} } \hfill} & {{{\mathbf{v}}_{0} } \hfill} \\ \end{array} } \right)}\frac{{{\left( {t - t_{{\text{i}}} } \right)}^{2} }} {4}} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + {\left( {\begin{array}{*{20}l} {{{\mathbf{v}}^{\dag }_{{\text{0}}} } \hfill} & {{{\mathbf{{v}''}}_{x} } \hfill} & {{{\text{v}}_{0} } \hfill} \\ {{{\mathbf{v}}^{\dag }_{{\text{0}}} } \hfill} & {{{\mathbf{{v}''}}_{{\text{y}}} } \hfill} & {{{\text{v}}_{0} } \hfill} \\ \end{array} } \right)}\frac{{{\left( {t - t_{{\text{i}}} } \right)}^{3} }} {6} + \partial _{{{\text{tt}}}} {\text{v}}\frac{{t^{3} - t^{3}_{{\text{i}}} }} {6}} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + \partial _{{\text{t}}} {\mathbf{{v}'r}}_{{\text{i}}} \frac{{t^{2} - t^{2}_{{\text{i}}} }} {2}} \hfill} \\ {{} \hfill} & {{} \hfill} & {{ + {\left( {\frac{{t^{3} - t^{3}_{{\text{i}}} }} {3} - \frac{{t^{2} - t^{2}_{{\text{i}}} }} {2}t_{{\text{i}}} } \right)}\partial _{{\text{t}}} {\mathbf{{v}'v}}_{{\text{0}}} } \hfill} \\ \end{array} $$
(36)
  • Non-symmetric displacement: For the displacement corresponding to Fig. 1a, we have r i=0, and the choice t i=0 and t ft seems appropriate. Using Eq. (35), this leads to Eq. (4), showing that, in this case, the error between the measured velocity Δrt, and the true velocity v 0 at the measurement location and at the time of the first image is of second order in Δt. One could also choose the origin of time halfway between t i and t f [see Eq. (38) below], which means that the measured velocity field is associated with the instant between the exposures of the two images. In this case, the term proportional to ∂t v in Eq. (4) would vanish, but the error, now given by Eq. (39), would still remain Ot 2).

  • Symmetric displacement: For the displacement corresponding to the symmetric window shifting in Fig. 1b, the following relations hold:

$$ {\mathbf{r}}_{{\text{f}}} = - {\mathbf{r}}_{{\text{i}}} = \frac{{\Delta {\mathbf{r}}}} {2} $$
(37)
$$ t_{{\text{f}}} = - t_{{\text{i}}} = \frac{{\Delta t}} {2} $$
(38)

Introducing Eq. (38) into Eq. (35), we obtain for t=t f:

$$ \Delta {\mathbf{r}} = {\mathbf{\nu }}_{0} \Delta t + {\mathbf{{\nu }'r}}_{{\text{i}}} \Delta t + {\mathbf{{\nu }'\nu }}_{0} \frac{{\Delta t^{2} }} {2} + O{\left( {\Delta t^{3} } \right)} $$
(39)

and, with Eq. (37) and I being the unit matrix

$$ {\left( {{\mathbf{I}} + \frac{{\Delta t}} {2}{\mathbf{{\nu }'}}} \right)}{\left( {\Delta {\mathbf{r}} - {\mathbf{\nu }}_{{\text{0}}} \Delta t} \right)} = O{\left( {\Delta t^{3} } \right)} $$
(40)

This results in

$$ \Delta {\mathbf{r}} = {\mathbf{\nu }}_{{\text{0}}} \Delta t + O{\left( {\Delta t^{3} } \right)} $$
(41)

showing that, for a symmetric displacement, the error is only of order Δt 3. The expression in Eq. (5) for this higher-order term is found by introducing Eqs. (37), (38) and (41) into Eq. (36).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meunier, P., Leweke, T. Analysis and treatment of errors due to high velocity gradients in particle image velocimetry. Exp Fluids 35, 408–421 (2003). https://doi.org/10.1007/s00348-003-0673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0673-2

Keywords

Navigation