Skip to main content
Log in

Sub-Grain Scale Digital Image Correlation by Electron Microscopy for Polycrystalline Materials during Elastic and Plastic Deformation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Damage during loading of polycrystalline metallic alloys is localized at or below the scale of individual grains. Quantitative assessment of the heterogeneous strain fields at the grain scale is necessary to understand the relationship between microstructure and elastic and plastic deformation. In the present study, digital image correlation (DIC) is used to measure the strains at the sub-grain level in a polycrystalline nickel-base superalloy where plasticity is localized into physical slip bands. Parameters to minimize noise given a set speckle pattern (introduced by chemical etching) when performing DIC in a scanning electron microscope (SEM) were adapted for measurements in both plastic and elastic regimes. A methodology for the optimization of the SEM and DIC parameters necessary for the minimization of the variability in strain measurements at high spatial resolutions is presented. The implications for detecting the early stages of damage development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Miao J, Pollock TM, Jones JW (2009) Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Mater 57(20):5964–5974. doi:10.1016/j.actamat.2009.08.022. http://www.sciencedirect.com/science/article/pii/S1359645409005357

    Article  Google Scholar 

  2. Miao J, Pollock TM, Jones JW (2012) Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy. Acta Mater 60(6–7):2840–2854. doi:10.1016/j.actamat.2012.01.049. http://www.sciencedirect.com/science/article/pii/S1359645412000870

    Article  Google Scholar 

  3. Cerrone A, Spear A, Tucker J, Stein C, Rollett A, Ingraffea A (2013). In: Materials Science and Technology (MS&T) Conference

  4. Stein CA, Cerrone A, Ozturk T, Lee S, Kenesei P, Tucker H, Pokharel R, Lind J, Hefferan C, Suter RM, Ingraffea AR, Rollett AD (2014) Fatigue crack initiation, slip localization and twin boundaries in a nickel-based superalloy. Curr Opinion Solid State Mater Sci 18(4):244–252. doi:10.1016/j.cossms.2014.06.001. http://www.sciencedirect.com/science/article/pii/S1359028614000370. Slip Localization and Transfer in Deformation and Fatigue of Polycrystals

    Article  Google Scholar 

  5. Zhang M, Bridier F, Villechaise P, Mendez J, McDowell D (2010) Simulation of slip band evolution in duplex Ti–6Al–4V. Acta Mater 58(3):1087–1096. doi: 10.1016/j.actamat.2009.10.025. http://www.sciencedirect.com/science/article/pii/S1359645409007198

    Article  Google Scholar 

  6. Zhao Z, Ramesh M, Raabe D, Cuitiño A, Radovitzky R (2008) Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int J Plast 24(12):2278–2297. doi:10.1016/j.ijplas.2008.01.002. http://www.sciencedirect.com/science/article/pii/S074964190800020X

    Article  MATH  Google Scholar 

  7. Merzouki T, Collard C, Bourgeois N, Zineb TB, Meraghni F (2010) Coupling between measured kinematic fields and multicrystal {SMA} finite element calculations. Mech Mater 42(1):72–95. doi:10.1016/j.mechmat.2009.09.003. http://www.sciencedirect.com/science/article/pii/S0167663609001562

    Article  Google Scholar 

  8. Héripré E, Dexet M, Crépin J, Gélébart L, Roos A, Bornert M, Caldemaison D (2007) Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials. Int J Plast 23(9):1512–1539. doi:10.1016/j.ijplas.2007.01.009. http://www.sciencedirect.com/science/article/pii/S074964190700006X

    Article  MATH  Google Scholar 

  9. Walley J, Wheeler R, Uchic M, Mills M (2012) In-situ mechanical testing for characterizing strain localization during deformation at elevated temperatures. Exp Mech 52(4):405–416. doi:10.1007/s11340-011-9499-7

    Article  Google Scholar 

  10. Carroll JD, Abuzaid W, Lambros J, Sehitoglu H (2013) High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. Int J Fatigue 57:140–150. doi:10.1016/j.ijfatigue.2012.06.010. http://www.sciencedirect.com/science/article/pii/S0142112312002113. Fatigue and Microstructure: A special issue on recent advances

    Article  Google Scholar 

  11. Carroll J, Clark B, Buchheit T, Boyce B, Weinberger C (2013) An experimental statistical analysis of stress projection factors in {BCC} tantalum. Mater Sci Eng A 581:108–118. doi:10.1016/j.msea.2013.05.085. http://www.sciencedirect.com/science/article/pii/S0921509313006515

    Article  Google Scholar 

  12. Raabe D, Sachtleber M, Zhao Z, Roters F, Zaefferer S (2001) Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater 49(17):3433–3441. doi:10.1016/S1359-6454(01)00242-7. http://www.sciencedirect.com/science/article/pii/S1359645401002427

    Article  Google Scholar 

  13. Delaire F, Raphanel J, Rey C (2000) Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations. Acta Mater 48(5):1075–1087. doi:10.1016/S1359-6454(99)00408-5. http://www.sciencedirect.com/science/article/pii/S1359645499004085

    Article  Google Scholar 

  14. Jin H, Lu WY, Haldar S, Bruck H (2011) Microscale characterization of granular deformation near a crack tip. J Mater Sci 46(20):6596–6602. doi:10.1007/s10853-011-5608-3

    Article  Google Scholar 

  15. Kammers A, Daly S (2013) Digital image correlation under scanning electron microscopy: methodology and validation. Exp Mech 53(9):1743–1761. doi:10.1007/s11340-013-9782-x

    Article  Google Scholar 

  16. Di Gioacchino F, Quinta da Fonseca J (2013) Plastic strain mapping with sub-micron resolution using digital image correlation. Exp Mech 53(5):743–754. doi:10.1007/s11340-012-9685-2

    Article  Google Scholar 

  17. Patriarca L, Abuzaid W, Sehitoglu H, Maier HJ (2013) Slip transmission in bcc FeCr polycrystal. Mater Sci Eng A 588:308–317. doi:10.1016/j.msea.2013.08.050. http://www.sciencedirect.com/science/article/pii/S0921509313009374

    Article  Google Scholar 

  18. Kammers A, Daly S (2013) Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp Mech 53(8):1333–1341. doi:10.1007/s11340-013-9734-5

    Article  Google Scholar 

  19. Abuzaid WZ, Sangid MD, Carroll JD, Sehitoglu H, Lambros J (2012) Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids 60(6):1201–1220. doi:10.1016/j.jmps.2012.02.001. http://www.sciencedirect.com/science/article/pii/S0022509612000324

    Article  Google Scholar 

  20. Tatschl A, Kolednik O (2003) A new tool for the experimental characterization of micro-plasticity. Mater Sci Eng A 339(1–2):265–280. doi:10.1016/S0921-5093(02)00111-9. http://www.sciencedirect.com/science/article/pii/S0921509302001119

    Article  Google Scholar 

  21. Sutton MA, Li N, Joy DC, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements Part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47 (6):775–787. doi:10.1007/s11340-007-9042-z

    Article  Google Scholar 

  22. Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X, Reynolds AP (2007) Scanning electron microscopy for quantitative small and large deformation measurements Part II: experimental validation for magnifications from 200 to 10,000. Exp Mech 47(6):789–804. doi:10.1007/s11340-007-9041-0

    Article  Google Scholar 

  23. Krueger D, Kissinger R, Menzies R (1992) Superalloys. In: Antolovich SD (ed). TMS-AIME, Warrendale, pp 277–286

  24. Miao J, Pollock T, Jones J. (TMS, Warrendale, PA, 2008), pp. 589–597

  25. Reed R (2006) The superalloys: fundamentals and applications. Cambridge University Press. http://books.google.com/books?id=SIUGcd4a-EkC

  26. Sutton MA (2008) Springer handbook of experimental solid mechanics. In: Sharpe J, William N (eds). doi:10.1007/978-0-387-30877-7_20. Springer, US, pp 565–600

  27. Bridier F, Stinville JC, Vanderesse N, Villechaise P, Bocher P (2014) Microscopic strain and crystal rotation measurement within metallurgical grains. Key Eng Mater 592:493–496

    Google Scholar 

  28. Vic-2D (2009) [software] (Correlated Solutions Inc., Columbia, SC)

  29. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001. http://stacks.iop.org/0957-0233/20/i=6/a=062001

    Article  Google Scholar 

  30. Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts,theory and applications. Springer. https://books.google.com/books?id=AlkqMxpQMLsC

  31. Sutton M, Mingqi C, Peters W, Chao Y, McNeill S (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(3):143–150. doi:10.1016/0262-8856(86)90057-0. http://www.sciencedirect.com/science/article/pii/0262885686900570

    Article  Google Scholar 

  32. Vendroux G, Knauss WG (1998) Submicron deformation field measurements: Part 2. Improved digital image correlation. Exp Mech 38(2):86–92. doi:10.1007/BF02321649

    Article  Google Scholar 

  33. Knauss WG, Chasiotis I, Huang Y (2003) Mechanical measurements at the micron and nanometer scales. Mech Mater 35(3–6):217–231. doi:10.1016/S0167-6636(02)00271-5. http://www.sciencedirect.com/science/article/pii/S0167663602002715

    Article  Google Scholar 

  34. Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X (2006) Metrology in a scanning electron microscope: theoretical developments and experimental validation. Meas Sci Technol 17(10):2613. http://stacks.iop.org/0957-0233/17/i=10/a=012

    Article  Google Scholar 

  35. Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2010) An experimental methodology to relate local strain to microstructural texture. Rev Sci Instrum 81(8):083703. doi:10.1063/1.3474902. http://scitation.aip.org/content/aip/journal/rsi/81/8/10.1063/1.3474902

    Article  Google Scholar 

  36. Darrell T, Wohn K (1988). In: Proceedings CVPR ’88, Computer Society Conference on Computer Vision and Pattern Recognition, 1988. doi:10.1109/CVPR.1988.196282, pp 504–509

  37. Carter JL, Uchic MD, Mills MJ (2015) Impact of speckle pattern parameters on DIC strain resolution calculated from in-situ SEM experiments. Springer International Publishing, pp 119– 126

  38. Villechaise P, Cormier J, Billot T, Mendez J (2012). In: 12th International Symposium on Superalloys, pp 15–24

  39. Stinville JC, Lenthe WC, Miao J, Pollock TM (2015) A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy. Acta Mater (under review)

  40. Stinville JC, Bridier F, Bocher P, Pollock TM (2015) High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater 98:29–42. doi:10.1016/j.actamat.2015.07.016. http://www.sciencedirect.com/science/article/pii/S1359645415004784

  41. Heinz A, Neumann P (1990) Crack initiation during high cycle fatigue of an austenitic steel. Acta Metall Mater 38(10):1933–1940. doi:10.1016/0956-7151(90)90305-Z. http://www.sciencedirect.com/science/article/pii/095671519090305Z

  42. Echlin MP, Lenthe WC, Pollock TM (2014) Three-dimensional sampling of material structure for property modeling and design. Integrating Materials and Manufacturing Innovation 3(1):21. doi:10.1186/s40192-014-0021-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of GE Global Research and appreciate useful discussions with J. Laflen, A. Loghin, S. Daly, and W. LePage. Remco Guerts (FEI) is also acknowledged for his iFAST contributions and support. The Air Force Center of Excellence (Grant # FA9550-12-1-0445) is also acknowledged for their support. Nicolas Vanderesse is also acknowledged for the development of the OpenDIC software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.P. Echlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stinville, J., Echlin, M., Texier, D. et al. Sub-Grain Scale Digital Image Correlation by Electron Microscopy for Polycrystalline Materials during Elastic and Plastic Deformation. Exp Mech 56, 197–216 (2016). https://doi.org/10.1007/s11340-015-0083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0083-4

Keywords

Navigation