Skip to main content
Log in

Photoproduction of \(\eta\) \(\pi\) pairs off nucleons and deuterons

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Quasi-free photoproduction of \(\pi\eta\)-pairs has been investigated from threshold up to incident photon energies of 1.4 GeV, respectively up to photon-nucleon invariant masses up to 1.9 GeV. Total cross sections, angular distributions, invariant-mass distributions of the \( \pi\eta\) and meson-nucleon pairs, and beam-helicity asymmetries have been measured for the reactions \( \gamma p\rightarrow p\pi^{0}\eta\), \( \gamma n\rightarrow n\pi^{0}\eta\) , \( \gamma p\rightarrow n\pi^{+}\eta\) , and \(\gamma n\rightarrow p\pi^{-}\eta\) from nucleons bound inside the deuteron. For the \(\gamma p\) initial-state data for free protons have also been analyzed. Finally, the total cross sections for quasi-free production of \( \pi^{0}\eta\) pairs from nucleons bound in 3 He nuclei have been investigated in view of final state interaction (FSI) effects. The experiments were performed at the tagged photon beam facility of the Mainz MAMI accelerator using an almost 4\( \pi\) covering electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. The shapes of all differential cross section data and the asymmetries are very similar for protons and neutrons and agree with the conjecture that the reactions are dominated by the sequential \( \Delta^{\star}3/2^{-}\rightarrow \eta\Delta(1232) \rightarrow\pi\eta N\) decay chain, mainly with \( \Delta(1700)3/2^{-}\) and \( \Delta(1940)3/2^{-}\) . The ratios of the magnitude of the total cross sections also agree with this assumption. However, the absolute magnitudes of the cross sections are reduced by FSI effects with respect to free proton data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.T. Chiang, F. Tabakin, Phys. Rev. C 55, 2054 (1997)

    Article  ADS  Google Scholar 

  2. W. Roberts, T. Oed, Phys. Rev. C 71, 055201 (2005)

    Article  ADS  Google Scholar 

  3. A.V. Sarantsev et al., Phys. Lett. B 659, 94 (2008)

    Article  ADS  Google Scholar 

  4. U. Thoma et al., Phys. Lett. B 659, 87 (2008)

    Article  ADS  Google Scholar 

  5. D. Krambrich et al., Phys. Rev. Lett. 103, 052002 (2009)

    Article  ADS  Google Scholar 

  6. V.L. Kashevarov et al., Phys. Rev. C 85, 064610 (2012)

    Article  ADS  Google Scholar 

  7. F. Zehr et al., Eur. Phys. J. A 48, 98 (2012)

    Article  ADS  Google Scholar 

  8. M. Oberle et al., Phys. Lett. B 721, 237 (2013)

    Article  ADS  Google Scholar 

  9. M. Oberle et al., Eur. Phys. J. A 50, 54 (2014)

    Article  ADS  Google Scholar 

  10. A. Thiel et al., Phys. Rev. Lett. 114, 091803 (2015)

    Article  ADS  Google Scholar 

  11. V. Sokhoyan et al., Phys. Lett. B 746, 127 (2015)

    Article  ADS  Google Scholar 

  12. V. Sokhoyan et al., Eur. Phys. J. A 51, 95 (2015)

    Article  ADS  Google Scholar 

  13. M. Dieterle et al., Eur. Phys. J. A 51, 142 (2015)

    Article  ADS  Google Scholar 

  14. T. Nakabayashi et al., Phys. Rev. C 74, 035202 (2006)

    Article  ADS  Google Scholar 

  15. J. Ajaka et al., Phys. Rev. Lett. 100, 052003 (2008)

    Article  ADS  Google Scholar 

  16. I. Horn et al., Phys. Rev. Lett. 101, 202002 (2008)

    Article  ADS  Google Scholar 

  17. I. Horn et al., Eur. Phys. J. A 38, 173 (2008)

    Article  ADS  Google Scholar 

  18. E. Gutz et al., Eur. Phys. J. A 35, 291 (2008)

    Article  ADS  Google Scholar 

  19. E. Gutz et al., Phys. Lett. B 687, 11 (2010)

    Article  ADS  Google Scholar 

  20. E. Gutz et al., Eur. Phys. J. A 50, 74 (2014)

    Article  ADS  Google Scholar 

  21. V. Kashevarov et al., Eur. Phys. J. A 42, 141 (2009)

    Article  ADS  Google Scholar 

  22. V. Kashevarov et al., Phys. Lett. B 693, 551 (2010)

    Article  ADS  Google Scholar 

  23. B. Krusche, C. Wilkin, Prog. Part. Nucl. Phys. 80, 43 (2015)

    Article  ADS  Google Scholar 

  24. A. Fix, V.L. Kashevarov, A. Lee, M. Ostrick, Phys. Rev. C 82, 035207 (2010) and private communication

    Article  ADS  Google Scholar 

  25. A. Fix, H. Arenhövel, Phys. Rev. C 83, 015503 (2011)

    Article  ADS  Google Scholar 

  26. M. Döring, E. Oset, D. Strottman, Phys. Lett. B 639, 59 (2006)

    Article  ADS  Google Scholar 

  27. M. Döring, E. Oset, D. Strottman, Phys. Rev. C 73, 045209 (2006)

    Article  ADS  Google Scholar 

  28. A. Käser et al., Phys. Lett. B 748, 244 (2015)

    Article  ADS  Google Scholar 

  29. B. Krusche, Eur. Phys. J. ST 198, 199 (2011)

    Article  Google Scholar 

  30. D. Werthmüller et al., Phys. Rev. Lett. 111, 232001 (2013)

    Article  ADS  Google Scholar 

  31. D. Werthmüller et al., Phys. Rev. C 90, 015205 (2014)

    Article  ADS  Google Scholar 

  32. M. Dieterle et al., Phys. Rev. Lett. 112, 142001 (2014)

    Article  ADS  Google Scholar 

  33. F. Pheron et al., Phys. Lett. B 709, 21 (2012)

    Article  ADS  Google Scholar 

  34. L. Witthauer et al., Eur. Phys. J. A 49, 154 (2013)

    Article  ADS  Google Scholar 

  35. H. Herminghaus et al., IEEE Trans. Nucl. Sci. 30, 3274 (1983)

    Article  ADS  Google Scholar 

  36. Th. Walcher, Prog. Part. Nucl. Phys. 24, 189 (1990)

    Article  ADS  Google Scholar 

  37. I. Anthony et al., Nucl. Instrum. Methods A 301, 230 (1991)

    Article  ADS  Google Scholar 

  38. S.J. Hall, G.J. Miller, R. Beck, P. Jennewein, Nucl. Instrum. Methods A 368, 698 (1996)

    Article  ADS  Google Scholar 

  39. J.C. McGeorge et al., Eur. Phys. J. A 37, 129 (2008)

    Article  ADS  Google Scholar 

  40. H. Olsen, L.C. Maximon, Phys. Rev. 114, 887 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Starostin et al., Phys. Rev. C 64, 055205 (2001)

    Article  ADS  Google Scholar 

  42. R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)

    Article  ADS  Google Scholar 

  43. A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994)

    Article  ADS  Google Scholar 

  44. D. Watts, in Calorimetry in Particle Physics, Proceedings of the 11th Internatinal Conference, Perugia, Italy 2004, edited by C. Cecchi, P. Cenci, P. Lubrano, M. Pepe (World Scientific, Singapore, 2005) p. 560

  45. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  46. B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003)

    Article  ADS  Google Scholar 

  47. M. Egorov, A. Fix, Phys. Rev. C 88, 054611 (2013)

    Article  ADS  Google Scholar 

  48. M. Pfeiffer et al., Phys. Rev. Lett. 92, 252001 (2004)

    Article  ADS  Google Scholar 

  49. B. Krusche et al., Phys. Rev. Lett. 74, 3736 (1995)

    Article  ADS  Google Scholar 

  50. B. Krusche et al., Phys. Lett. B 397, 171 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to B. Krusche.

Additional information

Communicated by H. Ströher

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The A2 Collaboration., Käser, A., Müller, F. et al. Photoproduction of \(\eta\) \(\pi\) pairs off nucleons and deuterons. Eur. Phys. J. A 52, 272 (2016). https://doi.org/10.1140/epja/i2016-16272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16272-1

Navigation