Skip to main content
Log in

Soy food and isoflavones are not associated with changes in serum lipids and glycohemoglobin concentrations among Japanese adults: a cohort study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

It is unclear whether habitual intake of soy or isoflavones induces long-term changes in the concentrations of blood lipids and glycaemia. We examined the associations of soy food and isoflavone consumption with changes in blood lipids and HbA1c concentrations over 5 years among Japanese adults.

Methods

This cohort study included 7252 subjects with no known history of major chronic disease at baseline. Soy intake was measured using a food frequency questionnaire; while the concentrations of serum lipids and HbA1c were measured using standard laboratory methods. We used multivariable linear mixed-effects models to examine the associations of changes in lipids and HbA1c concentrations with intakes of soy food and isoflavones.

Results

Among the participants, mean age was 61 years, 67% were females and median intakes of soy and isoflavones were 95.3 g/day and 47.4 mg/day, respectively. Soy food and isoflavone intakes were not associated with 5-year changes in blood lipids or HbA1c concentrations. However, stratified analyses showed inverse associations between fermented soy intake and serum lipids among obese/overweight subjects. In particular, intake of 20 g/day of natto was associated with a reduction of 1.4 (95% CI 0.3, 2.5) mg/dL in TC, 1.5 (95% CI 0.4, 2.6) mg/dL in non-high-density lipoprotein cholesterol, 1.0 (95% CI − 0.0, 2.0) mg/dL in low-density lipoprotein cholesterol and 4.0 (95% CI 0.6, 7.5) mg/dL in triglycerides.

Conclusions

Overall, habitual consumption of soy or isoflavones was not associated with changes in serum lipids or HbA1c concentrations. The negative associations between intake of natto and changes in serum lipids among overweight/obese subjects deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GBD (2016) Causes of Death Collaborators (2017) Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (London, England) 390(10100):1151–1210. https://doi.org/10.1016/s0140-6736(17)32152-9

    Article  Google Scholar 

  2. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Ärnlöv J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Bärnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castañeda-Orjuela CA, Castillo-Rivas J, Catalá-López F, Choi J-Y, Christensen H, Cirillo M, Cooper L, Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, El Sayed Zaki M, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Havmoeller R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javanbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang Y-H, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lal DK, Larsson A, Linn S, Lopez A, Lotufo PA, El Razek HMA, Malekzadeh R, Mazidi M, Meier T, Meles KG, Mensah G, Meretoja A, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owolabi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safiri S, Salomon JA, Santos I, Santric Milicevic M, Sartorius B, Schutte A, Sepanlou S, Shaikh MA, Shin M-J, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabarés-Seisdedos R, Tadele Atnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Truelsen T, Tyrovolas S, Ukwaja KN, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolfe C, Workicho A, Xu G, Yano Y, Yip P, Yonemoto N, Younis M, Yu C, Vos T, Naghavi M, Murray C (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25. https://doi.org/10.1016/j.jacc.2017.04.052

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  4. Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M (2006) Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation 113(7):1034–1044. https://doi.org/10.1161/circulationaha.106.171052

    Article  CAS  PubMed  Google Scholar 

  5. Sirtori CR, Eberini I, Arnoldi A (2007) Hypocholesterolaemic effects of soya proteins: results of recent studies are predictable from the Anderson meta-analysis data. Br J Nutr 97(5):816–822. https://doi.org/10.1017/s0007114507670810

    Article  CAS  PubMed  Google Scholar 

  6. Sirtori CR, Lovati MR, Manzoni C, Monetti M, Pazzucconi F, Gatti E (1995) Soy and cholesterol reduction: clinical experience. J Nutr 125(3 Suppl):598s–605s. https://doi.org/10.1093/jn/125.suppl_3.598S

    Article  CAS  PubMed  Google Scholar 

  7. Rietjens IMCM, Louisse J, Beekmann K (2017) The potential health effects of dietary phytoestrogens. Br J Pharmacol 174(11):1263–1280. https://doi.org/10.1111/bph.13622

    Article  CAS  PubMed  Google Scholar 

  8. Kwon DY, Daily JW 3rd, Kim HJ, Park S (2010) Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res (New York, NY) 30(1):1–13. https://doi.org/10.1016/j.nutres.2009.11.004

    Article  CAS  Google Scholar 

  9. Anderson JW, Johnstone BM, Cook-Newell ME (1995) Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 333(5):276–282. https://doi.org/10.1056/nejm199508033330502

    Article  CAS  PubMed  Google Scholar 

  10. Food and Drug Administration (1999) Food labeling: health claims; soy protein and coronary heart disease. Federal Register 64

  11. Food and Drug Administration (2018) Food labeling: health claims; soy protein and coronary heart disease. FDA. https://www.federalregister.gov/documents/2017/10/31/2017-23629/food-labeling-health-claims-soy-protein-and-coronary-heart-disease. Accessed 20 Mar 2019

  12. Liu ZM, Chen YM, Ho SC (2011) Effects of soy intake on glycemic control: a meta-analysis of randomized controlled trials. Am J Clin Nutr 93(5):1092–1101. https://doi.org/10.3945/ajcn.110.007187

    Article  CAS  PubMed  Google Scholar 

  13. Li W, Ruan W, Peng Y, Wang D (2018) Soy and the risk of type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies. Diabetes Res Clin Pract 137:190–199. https://doi.org/10.1016/j.diabres.2018.01.010

    Article  PubMed  Google Scholar 

  14. Xiao CW, Mei J, Wood CM (2008) Effect of soy proteins and isoflavones on lipid metabolism and involved gene expression. Front Biosci J Virtual Libr 13:2660–2673

    Article  CAS  Google Scholar 

  15. Huang C, Pang D, Luo Q, Chen X, Gao Q, Shi L, Liu W, Zou Y, Li L, Chen Z (2016) Soy isoflavones regulate lipid metabolism through an AKT/mTORC1 pathway in diet-induced obesity (DIO) male rats. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules21050586

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tokede OA, Onabanjo TA, Yansane A, Gaziano JM, Djousse L (2015) Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr 114(6):831–843. https://doi.org/10.1017/s0007114515002603

    Article  CAS  PubMed  Google Scholar 

  17. Weggemans RM, Trautwein EA (2003) Relation between soy-associated isoflavones and LDL and HDL cholesterol concentrations in humans: a meta-analysis. Eur J Clin Nutr 57(8):940–946. https://doi.org/10.1038/sj.ejcn.1601628

    Article  CAS  PubMed  Google Scholar 

  18. Qin Y, Niu K, Zeng Y, Liu P, Yi L, Zhang T, Zhang QY, Zhu JD, Mi MT (2013) Isoflavones for hypercholesterolaemia in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd009518.pub2

    Article  PubMed  Google Scholar 

  19. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S (2007) Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 85(4):1148–1156. https://doi.org/10.1093/ajcn/85.4.1148

    Article  CAS  PubMed  Google Scholar 

  20. Ye YB, Chen AL, Lu W, Zhuo SY, Liu J, Guan JH, Deng WP, Fang S, Li YB, Chen YM (2015) Daidzein and genistein fail to improve glycemic control and insulin sensitivity in Chinese women with impaired glucose regulation: a double-blind, randomized, placebo-controlled trial. Mol Nutr Food Res 59(2):240–249. https://doi.org/10.1002/mnfr.201400390

    Article  CAS  PubMed  Google Scholar 

  21. Yamori Y, Sagara M, Arai Y, Kobayashi H, Kishimoto K, Matsuno I, Mori H, Mori M (2017) Soy and fish as features of the Japanese diet and cardiovascular disease risks. PLoS One 12(4):e0176039. https://doi.org/10.1371/journal.pone.0176039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsugane S, Sawada N (2014) The JPHC study: design and some findings on the typical Japanese diet. Jpn J Clin Oncol 44(9):777–782. https://doi.org/10.1093/jjco/hyu096

    Article  PubMed  Google Scholar 

  23. Watanabe S, Tsugane S, Sobue T, Konishi M, Baba S (2001) Study design and organization of the JPHC study Japan Public Health Center-based prospective study on cancer and cardiovascular diseases. J Epidemiol 11(6 Suppl):S3–S7

    Article  CAS  PubMed  Google Scholar 

  24. Noda M, Kato M, Takahashi Y, Matsushita Y, Mizoue T, Inoue M, Tsugane S, Kadowaki T (2010) Fasting plasma glucose and 5-year incidence of diabetes in the JPHC diabetes study—suggestion for the threshold for impaired fasting glucose among Japanese. Endocr J 57(7):629–637

    Article  CAS  PubMed  Google Scholar 

  25. Goto A, Noda M, Matsushita Y, Goto M, Kato M, Isogawa A, Takahashi Y, Kurotani K, Oba S, Nanri A, Mizoue T, Yamagishi K, Yatsuya H, Saito I, Kokubo Y, Sawada N, Inoue M, Iso H, Kadowaki T, Tsugane S (2015) Hemoglobin a1c levels and the risk of cardiovascular disease in people without known diabetes: a population-based cohort study in Japan. Medicine 94(17):e785. https://doi.org/10.1097/md.0000000000000785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bertoia ML, Rimm EB, Mukamal KJ, Hu FB, Willett WC, Cassidy A (2016) Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124,086 US men and women followed for up to 24 years. BMJ (Clin Res Ed) 352:i17. https://doi.org/10.1136/bmj.i17

    Article  CAS  Google Scholar 

  27. Rhee JJ, Sampson L, Cho E, Hughes MD, Hu FB, Willett WC (2015) Comparison of methods to account for implausible reporting of energy intake in epidemiologic studies. Am J Epidemiol 181(4):225–233. https://doi.org/10.1093/aje/kwu308

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Zhang X, Pan B, Jin X, Yao H, Chen B, Zou Y, Ge J, Chen H (2010) A modified formula for calculating low-density lipoprotein cholesterol values. Lipids Health Dis 9:52. https://doi.org/10.1186/1476-511x-9-52

    Article  PubMed  PubMed Central  Google Scholar 

  29. Malkani S, Mordes JP (2011) Implications of using hemoglobin A1C for diagnosing diabetes mellitus. Am J Med 124(5):395–401. https://doi.org/10.1016/j.amjmed.2010.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jones GR, Barker G, Goodall I, Schneider HG, Shephard MD, Twigg SM (2011) Change of HbA1c reporting to the new SI units. Med J Aust 195(1):45–46

    Article  PubMed  Google Scholar 

  31. Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes M, Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, Ito C, Inagaki N, Iwamoto Y, Kasuga M, Hanafusa T, Haneda M, Ueki K (2010) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig 1(5):212–228. https://doi.org/10.1111/j.2040-1124.2010.00074.x

    Article  Google Scholar 

  32. Sasaki S, Kobayashi M, Ishihara J, Tsugane S (2003) Self-administered food frequency questionnaire used in the 5-year follow-up survey of the JPHC study: questionnaire structure, computation algorithms, and area-based mean intake. J Epidemiol 13(1 Suppl):S13–S22

    Article  PubMed  Google Scholar 

  33. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130(9):2243–2250. https://doi.org/10.1093/jn/130.9.2243

    Article  CAS  PubMed  Google Scholar 

  34. Kimira M, Arai Y, Shimoi K, Watanabe S (1998) Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol 8(3):168–175

    Article  CAS  PubMed  Google Scholar 

  35. Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124(1):17–27

    Article  CAS  PubMed  Google Scholar 

  36. Yamamoto S, Sobue T, Sasaki S, Kobayashi M, Arai Y, Uehara M, Adlercreutz H, Watanabe S, Takahashi T, Iitoi Y, Iwase Y, Akabane M, Tsugane S (2001) Validity and reproducibility of a self-administered food-frequency questionnaire to assess isoflavone intake in a japanese population in comparison with dietary records and blood and urine isoflavones. J Nutr 131(10):2741–2747. https://doi.org/10.1093/jn/131.10.2741

    Article  CAS  PubMed  Google Scholar 

  37. Inoue M, Iso H, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, Tsugane S (2008) Daily total physical activity level and premature death in men and women: results from a large-scale population-based cohort study in Japan (JPHC study). Ann Epidemiol 18(7):522–530. https://doi.org/10.1016/j.annepidem.2008.03.008

    Article  PubMed  Google Scholar 

  38. Bellou V, Belbasis L, Tzoulaki I, Evangelou E (2018) Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLoS One 13(3):e0194127. https://doi.org/10.1371/journal.pone.0194127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Erem C, Hacihasanoglu A, Deger O, Kocak M, Topbas M (2008) Prevalence of dyslipidemia and associated risk factors among Turkish adults: trabzon lipid study. Endocrine 34(1–3):36–51. https://doi.org/10.1007/s12020-008-9100-z

    Article  CAS  PubMed  Google Scholar 

  40. Song PK, Li H, Man QQ, Jia SS, Li LX, Zhang J (2017) Trends in determinants of hypercholesterolemia among Chinese adults between 2002 and 2012: results from the national nutrition survey. Nutrients. https://doi.org/10.3390/nu9030279

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hata Y, Nakajima K (2000) Life-style and serum lipids and lipoproteins. J Atheroscler Thromb 7(4):177–197

    Article  CAS  PubMed  Google Scholar 

  42. Rubin DB (2008) Multiple imputation for nonresponse in surveys. Wiley, New York

    Google Scholar 

  43. Langsted A, Freiberg JJ, Nordestgaard BG (2008) Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation 118(20):2047–2056. https://doi.org/10.1161/circulationaha.108.804146

    Article  CAS  PubMed  Google Scholar 

  44. Devaraj S, Cao J, Roper SM (2017) To fast or not to fast?: Comments on the consensus statement from the European Atherosclerosis Society/European Federation of Clinical Chemistry and Laboratory Medicine. Arch Pathol Lab Med 141(4):487–489. https://doi.org/10.5858/arpa.2016-0309-ED

    Article  PubMed  Google Scholar 

  45. Ruscica M, Pavanello C, Gandini S, Gomaraschi M, Vitali C, Macchi C, Morlotti B, Aiello G, Bosisio R, Calabresi L, Arnoldi A, Sirtori CR, Magni P (2018) Effect of soy on metabolic syndrome and cardiovascular risk factors: a randomized controlled trial. Eur J Nutr 57(2):499–511. https://doi.org/10.1007/s00394-016-1333-7

    Article  CAS  PubMed  Google Scholar 

  46. Harland JI, Haffner TA (2008) Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25 g soya protein per day and blood cholesterol. Atherosclerosis 200(1):13–27. https://doi.org/10.1016/j.atherosclerosis.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  47. Lichtenstein AH, Jalbert SM, Adlercreutz H, Goldin BR, Rasmussen H, Schaefer EJ, Ausman LM (2002) Lipoprotein response to diets high in soy or animal protein with and without isoflavones in moderately hypercholesterolemic subjects. Arterioscler Thromb Vasc Biol 22(11):1852–1858

    Article  CAS  PubMed  Google Scholar 

  48. Benowitz NL (2003) Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog Cardiovasc Dis 46(1):91–111. https://doi.org/10.1016/S0033-0620(03)00087-2

    Article  CAS  PubMed  Google Scholar 

  49. Nanri A, Mizoue T, Takahashi Y, Kirii K, Inoue M, Noda M, Tsugane S (2010) Soy product and isoflavone intakes are associated with a lower risk of type 2 diabetes in overweight Japanese women. J Nutr 140(3):580–586. https://doi.org/10.3945/jn.109.116020

    Article  CAS  PubMed  Google Scholar 

  50. Ding M, Pan A, Manson JE, Willett WC, Malik V, Rosner B, Giovannucci E, Hu FB, Sun Q (2016) Consumption of soy foods and isoflavones and risk of type 2 diabetes: a pooled analysis of three US cohorts. Eur J Clin Nutr 70:1381. https://doi.org/10.1038/ejcn.2016.117. https://www.nature.com/articles/ejcn2016117#supplementary-information

  51. Erdman John W (2000) Soy protein and cardiovascular disease. Circulation 102(20):2555–2559. https://doi.org/10.1161/01.CIR.102.20.2555

    Article  Google Scholar 

  52. Crouse JR 3rd, Morgan T, Terry JG, Ellis J, Vitolins M, Burke GL (1999) A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins. Arch Intern Med 159(17):2070–2076

    Article  CAS  PubMed  Google Scholar 

  53. Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, Gonzalez-Campoy JM, Jones SR, Kumar R, La Forge R, Samuel VT (2013) Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol 7(4):304–383. https://doi.org/10.1016/j.jacl.2013.04.001

    Article  PubMed  Google Scholar 

  54. Bertoia ML, Mukamal KJ, Cahill LE, Hou T, Ludwig DS, Mozaffarian D, Willett WC, Hu FB, Rimm EB (2015) Changes in intake of fruits and vegetables and weight change in united states men and women followed for up to 24 years: analysis from three prospective cohort studies. PLoS Med 12(9):e1001878. https://doi.org/10.1371/journal.pmed.1001878

    Article  PubMed  PubMed Central  Google Scholar 

  55. The Council for Science and Technology MoE, Culture, Sports, Science and Technology (2015) Standard tables of food composition in Japan, seventh revised edition. Ministry of Education, Culture, Sports, Science and Technology, Tokyo

    Google Scholar 

  56. Vinayagam R, Xu B (2015) Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab 12:60. https://doi.org/10.1186/s12986-015-0057-7

    Article  CAS  Google Scholar 

  57. Chen L, Li QY, Shi XJ, Mao SL, Du YL (2013) 6-Hydroxydaidzein enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. J Agric Food Chem 61(45):10714–10719. https://doi.org/10.1021/jf402694m

    Article  CAS  PubMed  Google Scholar 

  58. Barros RP, Machado UF, Gustafsson JA (2006) Estrogen receptors: new players in diabetes mellitus. Trends Mol Med 12(9):425–431. https://doi.org/10.1016/j.molmed.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  59. NCD Risk Factor Collaboration (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 387(10026):1377–1396. https://doi.org/10.1016/S0140-6736(16)30054-X

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Cancer Center Research and Development Fund (23-A-31[toku], 26-A-2 and 29-A-4, since 2011) and a Grant-in-Aid for Cancer Research from the Ministry of Health, Labour and Welfare of Japan (19shi-2, from 1989 to 2010). Members of Japan Public Health Center-based Prospective Study (JPHC Study) are listed at the following site (as of April 2017): http://epi.ncc.go.jp/en/jphc/781/7951.html.

Author information

Authors and Affiliations

Authors

Contributions

CW, NS, MN and ST designed the study; AG, MN and ST conducted the research; CW performed statistical analysis and wrote the manuscript; NS provided study oversight; and all authors interpreted the data, provided critical input, and read and approved the final manuscript. NS had primary responsibility for the final content.

Corresponding author

Correspondence to Norie Sawada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study was approved by the Institutional Review Board of the National Cancer Center of Japan approved the JPHC prospective and the JPHC diabetes studies and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendment. All participants gave their informed consent prior to their inclusion in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilunda, C., Sawada, N., Goto, A. et al. Soy food and isoflavones are not associated with changes in serum lipids and glycohemoglobin concentrations among Japanese adults: a cohort study. Eur J Nutr 59, 2075–2087 (2020). https://doi.org/10.1007/s00394-019-02057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02057-7

Keywords

Navigation