Skip to main content

Advertisement

Log in

Structural implications of mutations assessed by molecular dynamics: Vpu1–32 from HIV-1

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Structural pore models are generated for Vpu1–32WT from HIV-1 as well as for three mutants W23L, S24L and R31V. A computational methodology is employed which samples the whole conformational space of the pentameric assemblies of Vpu. The analysis of the related energy landscape reveals a small set of reasonable pore models, which are thoroughly investigated regarding their structural properties as well as their putative stability under native-like conditions. The models are also discussed in respect of earlier experimental findings about their channel activities. The study proposes functional pores reflecting the experimentally found conductance states of Vpu and its mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chandrasekhar I, Kastenholz M, Lins RD, Oostenbrink C, Schuler LD, van Gunsteren WF (2003) A consistent potential energy parameter set for lipids: dipalmitoyl-phosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J 32:67–77

    CAS  PubMed  Google Scholar 

  • Chen M-Y, Maldarelli F, Martin MA, Strebel K (1993) Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain contributes to Vpu sensitivity. J Virol 67:3877–3884

    CAS  PubMed  Google Scholar 

  • Cohen EA, Terwilliger EF, Sodroski JG, Haseltine WA (1988) Identification of a protein encoded by the vpu gene of HIV-1. Nature 334:532–534. doi:10.1038/334532a0

    Article  CAS  PubMed  Google Scholar 

  • Ewart GD, Sutherland T, Gage PW, Cox GB (1996) The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol 70:7108–7115

    CAS  PubMed  Google Scholar 

  • Fischer WB (2003) Vpu from HIV-1 on an atomic scale: experiments and computer simulations. FEBS Lett 552:39–46. doi:10.1016/S0014-5793(03)00782-8

    Article  CAS  PubMed  Google Scholar 

  • Fischer WB (2005) Viral membrane proteins: structure, function and drug design. In: Atassi MZ (ed) Protein reviews, vol 1. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Fischer WB, Krüger J (2009) Viral channel forming proteins. Int Rev Cell Mol Biol 275:35–63

    Article  CAS  PubMed  Google Scholar 

  • Friborg J, Ladha A, Göttlinger H, Haseltine WA, Cohen EA (1995) Functional analysis of the phosphorylation sites on the human immunodeficiency virus type-1 Vpu protein. J Acquir Immune Defic Syndr Hum Retrovirol 8:10–22

    CAS  PubMed  Google Scholar 

  • Hsu K, Seharaseyon J, Dong P, Bour S, Marbán E (2004) Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol Cell 14:259–267. doi:10.1016/S1097-2765(04)00183-2

    Article  CAS  PubMed  Google Scholar 

  • Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglycoporins. Proc Natl Acad Sci USA 105:1198–1203. doi:10.1073/pnas.0707662104

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Das SR, Tanwar C, Jameel S (2007) Oligomerization of the human immunodeficiency virus type I (HIV-1) Vpu protein––a genetic, biochemical and biophysical analysis. Virol J 4:1–11. doi:10.1186/1743-422X-4-81

    Article  Google Scholar 

  • Krüger J, Fischer WB (2008) Exploring the conformational space of Vpu from HIV-1: a versatile and adaptable protein. J Comput Chem 29:2416–2424. doi:10.1002/jcc.20986

    Article  PubMed  Google Scholar 

  • Kukol A, Arkin IT (1999) Vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching. Biophys J 77:1594–1601. doi:10.1016/S0006-3495(99)77007-4

    Article  CAS  PubMed  Google Scholar 

  • Lindahl E, Hess B, Van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  • Ma C, Marassi FM, Jones DH, Straus SK, Bour S, Strebel K, Schubert U, Oblatt-Montal M, Montal M, Opella SJ (2002) Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci 11:546–557. doi:10.1110/ps.37302

    Article  CAS  PubMed  Google Scholar 

  • Margottin F, Benichou S, Durand H, Richard V, Liu LX, Benarous R (1996) Interaction between the cytoplasmic domains of HIV-1 Vpu and CD4: role of Vpu residues involved in CD4 interaction and in vitro CD4 degradation. Virology 223:381–386. doi:10.1006/viro.1996.0491

    Article  CAS  PubMed  Google Scholar 

  • Mehnert T, Lam YH, Judge PJ, Routh A, Fischer D, Watts A, Fischer WB (2007) Towards a mechanism of function of the viral ion channel Vpu from HIV-1. J Biomol Struct Dyn 24:589–596

    CAS  PubMed  Google Scholar 

  • Mehnert T, Routh A, Judge PJ, Lam YH, Fischer D, Watts A, Fischer WB (2008) Biophysical characterisation of Vpu from HIV-1 suggests a channel-pore dualism. Proteins 70:1488–1497. doi:10.1002/prot.21642

    Article  CAS  PubMed  Google Scholar 

  • Montal M (2003) Structure–function correlates of Vpu, a membrane protein of HIV-1. FEBS Lett 552:47–53. doi:10.1016/S0014-5793(03)00849-4

    Article  CAS  PubMed  Google Scholar 

  • Neil SJD, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–431. doi:10.1038/nature06553

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Kim S, Zhang L, Cross TA (2002) The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR. Biochemistry 41:13170–13177. doi:10.1021/bi0262799

    Article  CAS  PubMed  Google Scholar 

  • Portella G, Hub JS, Vesper MD, De Groot BL (2008) Not only enthalpy: large entropy contribution to ion permeation barriers in single-file channels. Biophys J 95:2275–2282. doi:10.1529/biophysj.108.130609

    Article  CAS  PubMed  Google Scholar 

  • Schubert U, Clouse KA, Strebel K (1995) Augmentation of virus secretion by the human immunodeficiency virus type 1 Vpu protein is cell type independent and occurs in cultured human primary macrophages and lymphocytes. J Virol 69:7699–7711

    CAS  PubMed  Google Scholar 

  • Schubert U, Bour S, Ferrer-Montiel AV, Montal M, Maldarelli F, Strebel K (1996a) The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J Virol 70:809–819

    CAS  PubMed  Google Scholar 

  • Schubert U, Ferrer-Montiel AV, Oblatt-Montal M, Henklein P, Strebel K, Montal M (1996b) Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett 398:12–18. doi:10.1016/S0014-5793(96)01146-5

    Article  CAS  PubMed  Google Scholar 

  • Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Computational Chem 22:1205–1218

    Article  CAS  Google Scholar 

  • Sramala I, Lemaitre V, Faraldo-Gomez JD, Vincent S, Watts A, Fischer WB (2003) Molecular dynamics simulations on the first two helices of Vpu from HIV-1. Biophys J 84:3276–3284. doi:10.1016/S0006-3495(03)70052-6

    Article  CAS  PubMed  Google Scholar 

  • Strebel K, Klimkait T, Martin MA (1988) Novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241:1221–1223. doi:10.1126/science.3261888

    Article  CAS  PubMed  Google Scholar 

  • Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 346:967–989. doi:10.1016/j.jmb.2004.12.031

    Article  CAS  PubMed  Google Scholar 

  • van Damme N, Goff D, Katsura C, Jorgensen RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:1–8. doi:10.1016/j.chom.2007.12.002

    Article  Google Scholar 

  • van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) Gromacs: fast, flexible and free. J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291

    Article  Google Scholar 

  • Wray V, Kinder R, Federau T, Henklein P, Bechinger B, Schubert U (1999) Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high resolution and solid-state NMR spectroscopy. Biochemistry 38:5272–5282. doi:10.1021/bi982755c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

WBF acknowledges National Yang-Ming University and the government of Taiwan for financial support (Aim of Excellence Program), as well as the National Science Council of Taiwan (NSC). J.K. acknowledges a fellowship granted jointly by the Alexander von Humboldt-Foundation and NSC. We thank the Paderborn Center for Parallel Computing PC2 (http://wwwcs.uni-paderborn.de/pc2/) for providing computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang B. Fischer.

Additional information

Viral membrane proteins, Heidelberg, December 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, J., Fischer, W.B. Structural implications of mutations assessed by molecular dynamics: Vpu1–32 from HIV-1. Eur Biophys J 39, 1069–1077 (2010). https://doi.org/10.1007/s00249-009-0487-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0487-0

Keywords

Navigation