Skip to main content
Log in

Use of normal modes for structural modeling of proteins: the case study of rat heme oxygenase 1

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We present an original approach based on full-atom normal mode analysis (NMA) aimed to expand the general framework of homology modeling. Using the rat heme-free oxygenase 1 as a case system, we show how NMA can be used to model different physiologically relevant conformations of the same protein. Starting from a unique heme-bound X-ray structure, and using two structural templates corresponding to a human and an incomplete rat heme-free structures, we generate models of the rat unbound species with open and closed conformations. Less than 100 lowest frequency modes of the target were sufficient to obtain the heme-free conformations, the closest to the templates. The rat HO-1 model built for the open form shows features similar to the open form of the human heme-free oxygenase, and the one built for the closed form was similar to the incompletely resolved X-ray structure of the same protein available in the Protein DataBank. In the latter case, the use of NMA was particularly useful since it allowed to build a complete structure and therefore to discuss on the reason of the structural differences between open and closed forms. This study shows that the amount of main chain flexibility provided by the normal modes can lead to major improvements in homology modeling approaches. Such applications will allow the characterization of alternative conformations of a target protein with respect to the templates and/or the construction of good quality 3D models based on existing templates with unresolved parts in their tertiary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brooks B, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M (1983) Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  Google Scholar 

  • Brooks BR, Janežič D, Karplus M (1995) Harmonic analysis of large systems. I: Methodology. J Comput Chem 16:1522–1542

    Article  Google Scholar 

  • Cavasotto C, Kovacs J, Abagyan RA (2005) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127:9632–9640

    Article  Google Scholar 

  • Chen X, Poon B, Dousis A, Wang Q, Ma J (2007) Normal-mode refinement of anisotropic thermal parameters for potassium channel KcsA at 3.2 Å crystallographic resolution. Structure 15:955–962

    Article  Google Scholar 

  • Cui Q, Bahar I (2006) Normal mode analysis: theory and applications to biological and chemical systems. Chapman & Hall, London

    Google Scholar 

  • Cui Q, Li G, Ma J, Karplus M (2004) A normal mode analysis of structural plasticity in the biomolecular motor F1-ATPase. J Mol Biol 340:345–372

    Article  Google Scholar 

  • Eyal E, Yang L-W, Bahar I (2006) Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics 22:2619–2627

    Article  Google Scholar 

  • Eswar N, John B, Mirkovic N, Fiser A, Ilyin V, Pieper U, Stuart A, Marti-Renom M, Madhusudhan M, Yerkovich B, Sali A (2003) Tools for comparative protein structure modeling and analysis Nucl. Acids Res 31:3375–3380

    Article  Google Scholar 

  • Fiser A, Sali A (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19:2500–2501

    Article  Google Scholar 

  • Floquet N, Maréchal J-D, Badet-Denisot M-A, Robert C, Dauchez M, Perahia D (2006) Normal mode analysis as a prerequisite for drug design: application to matrix metalloproteinases inhibitors. FEBS Lett 580:5130–5136

    Article  Google Scholar 

  • Guilbert C, Pecorari F, Perahia D, Mouawad L (1996) Low frequency motions in phosphoglycerate kinase: a normal mode analysis. Chem Phys 204:327–336

    Article  Google Scholar 

  • Krieger E, Sander B, Vriend G (2003) Homology modeling. In: Bourne P, Weissig H (eds) Structural bioinformatics, vol 44. Wiley–Liss, New York, pp 507–521

    Chapter  Google Scholar 

  • Lad L, Schuller D, Shimizu H, Friedman J, Li H, Ortiz de Montellano P, Poulos T (2003) Comparison of the heme-free and -bound crystal structures of human heme oxygenase-1. J Biol Chem 278:7834–7843

    Article  Google Scholar 

  • Leo-Macias A, Lopez-Romero P, Lupyan D, Zerbino D, Ortiz AR (2005) Core deformations in protein families: a physical perspective. Biophys Chem 115:125–128

    Article  Google Scholar 

  • Li G, Cui Q (2002) A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca2þ -ATPase. Biophys J 83:2457–2474

    Article  Google Scholar 

  • May A, Zacharias M (2005) Accounting for global protein deformability during protein–protein and protein–ligand docking. Biochim Biophys Acta 1754:225–231

    Google Scholar 

  • Mouawad L, Perahia D (1996) Motions in haemoglobin studied by normal mode analysis and energy minimization. Evidence for the existence of tertiary T-like, quaternary R-like intermediate structures. J Mol Biol 258:393–410

    Article  Google Scholar 

  • Perahia D, Mouawad L (1995) Computation of low frequency normal modes in macromolecules: improvements to the method of diagonalization in a mixed basis and application. Comput Chem 19:241–246

    Article  Google Scholar 

  • Sugishima M, Omata Y, Kakuta Y, Sakamoto H, Noguchi M, Fukuyama K (2000) Crystal structure of rat heme oxygenase-1 in complex with heme. FEBS Lett 471:61–66

    Article  Google Scholar 

  • Sugishima M, Sakamoto H, Kakuta Y, Omata Y, Hayashi S, Noguchi M, Fukuyama K (2002) Crystal structure of rat apo-heme oxygenase-1 (HO-1): mechanism of heme binding in HO-1 inferred from structural comparison of the apo and heme complex forms. Biochemistry 41:7293–7300

    Article  Google Scholar 

  • Tama F, Gadea F, Marques O, Sanejouand Y (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Proteins Struct Funct Genet 41:1

    Google Scholar 

  • Tama F, Miyashita O, Brooks C (2004) Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM. J Struct Biol 147:315–326

    Article  Google Scholar 

  • Thomas A, Field M, Mouawad L, Perahia D (1996) Analysis of the low frequency normal modes of the T-state of Aspartate transcarbamylase. J Mol Biol 257:1070–1087

    Article  Google Scholar 

  • Wu Y, Tian X, Lu M, Chen M, Wang Q, Ma J (2005) Folding of small helical proteins assisted by small-angle X-ray scattering profiles. Structure 13:1587–1597

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Didier Maréchal.

Additional information

Regional Biophysics Conference of the National Biophysical Societies of Austria, Croatia, Hungary, Italy, Serbia, and Slovenia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maréchal, JD., Perahia, D. Use of normal modes for structural modeling of proteins: the case study of rat heme oxygenase 1. Eur Biophys J 37, 1157–1165 (2008). https://doi.org/10.1007/s00249-008-0279-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0279-y

Keywords

Navigation