Skip to main content
Log in

Gel structures in soils

  • Soil Physics
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The colloidal structures in soils were studied by scanning and transmission electron microscopy. Small-angle neutron scattering was used in the pioneering study of the colloidal soil structures and their rearrangements under the effect of different factors. It was found that colloidal particles are fixed apart in a gel matrix formed by organic molecules. The results obtained suggest that the organomineral gel is composed of soil humus occurring, at least in part, in a gel-like status and reinforced by organic and inorganic colloidal particles. In the interaction with water, the reinforced humus gel behaves as many polymers: it swells, absorbing water and increasing in volume; it shrinks under drying conditions. Different impacts on the soil affect the status of the reinforced humus gel, which results in the observed changes of the soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Aleksandrova, Soil Organic Matter and Its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. G. Wigner, Selected Works (Sel’khozgiz, Moscow, 1941) [in Russian].

    Google Scholar 

  3. S. S. Voyutskii, Solutions of High-Molecular Compounds (Goskhimizdat, Moscow, 1960) [in Russian].

    Google Scholar 

  4. K. K. Gedroits, Theory of the Absorbing Capacity of Soils (RIKNKZ, Petrograd, 1922) [in Russian].

    Google Scholar 

  5. G. I. Glebova, “Determination of the Size and Shape of Humus Acid Particles by Electron Miscroscopy,” Pochvovedenie, No. 7, 115–117 (1972).

  6. N. I. Gorbunov, Mineralogy and Colloidal Chemistry of Soils (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  7. V. M. Dudarchik and T. P. Smychnik, “Electron Microscopy of Humic Acids,” Pochvovedenie, No. 11, 1335–1341 (2003) [Eur. Soil Sci. 36 (11), 1191–1198 (2003)].

  8. I. F. Efremov, Periodic Colloidal Structures (Khimiya, Leningrad, 1971) [in Russian].

    Google Scholar 

  9. I. V. Ivanov and T. S. Lukovskaya, Bibliography: Materials Published in Pochvovedenie for 100 Years (Nauka, Moscow, 1998) [in Russian].

    Google Scholar 

  10. E. M. Kol’tsova, Yu. D. Tret’yakov, L. S. Gordeev, and A. A. Vertegel, Nonlinear Dynamics and Thermodynamics of Irreversible Processes in Chemistry and Chemical Technology (Khimiya, Moscow, 2001) [in Russian].

    Google Scholar 

  11. A. I. Kuklin, A. P. Sirotin, A. S. Kirilov, et al., “Automation and Environment of a Modernized YuMO Spectrometer Model,” Reprint No. R13-2004-77, OIYaI (Joint Institute for Nuclear Research, Dubna, 2004).

    Google Scholar 

  12. N. I. Laktionov, Yu. A. Rybakova, L. A. Sysoev, and V. I. Chaplygin, “Structure of Humic Acid and Sodium Humate Hydrosols,” Pochvovedenie, No. 7, 129–134 (1992).

  13. S. Mattson, Soil Colloids (1932).

  14. S. P. Papkov, Jelly State of Polymers (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  15. Laboratory Manual of Agrochemistry, Ed. by V. G. Mineev (Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  16. A. G. Solov’ev, T. M. Solov’eva, A. V. Stadnik, et al., SAS, Program for the Primary Processing of Small-Angle Scattering Spectra. Ver. 2.4. Description and Manual for Users: Communication of the Joint Institute for Nuclear Research No. R10-2003-86 (Ob. Inst. Yad. Issled., Dubna, 2003) [in Russian].

    Google Scholar 

  17. A. A. Tager, Physical Chemistry of Polymers (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  18. A. F. Tyulin, Organomineral Colloids in the Soil, Their Genesis, and Significance for the Root Nutrition of Higher Plants (Akad. Nauk SSSR, Moscow, 1958) [in Russian].

    Google Scholar 

  19. G. N. Fedotov, Yu. D. Tret’yakov, A. I. Pozdnyakov, et al., “Effect of the Colloidal Structure of Organomineral Gel on Soil Properties,” Dokl. Akad. Nauk 394(2), 212–214 (2004).

    Google Scholar 

  20. G. N. Fedotov, A. I. Pozdnyakov, D. V. Zhukov, and E. I. Pakhomov, “Organomineral Gels in Soils: Experimental Facts and Hypotheses,” Pochvovedenie, No. 6, 691–696 (2004) [Eur. Soil Sci. 37 (6), 599–603 (2004)].

  21. G. N. Fedotov, Yu. D. Tret’yakov, A. I. Pozdnyakov, and E. I. Pakhomov, “Role of Organomineral Gel in the Formation of the Nonsolvent Volume of Soils,” Dokl. Akad. Nauk 397(1), 64–67 (2004).

    Google Scholar 

  22. G. N. Fedotov, Yu. D. Tret’yakov, G. V. Dobrovol’skii, et al., “Effect of Organomineral Gels on the Thermal Conductivity of Soils,” Dokl. Akad. Nauk 399(3), 66–68 (2004).

    Google Scholar 

  23. G. N. Fedotov, Yu. D. Tret’yakov, and A. D. Neklyudov, “Role of Organomineral Gels in the Generation of Filtration Electric Fields,” Dokl. Akad. Nauk 399(4), 494–497 (2004).

    Google Scholar 

  24. G. N. Fedotov, Yu. D. Tret’yakov, A. I. Pozdnyakov, et al., “Role of Organomineral Gel in the Generation of Natural Electric Fields in Soils,” Dokl. Akad. Nauk 393(4), 497–500 (2003).

    Google Scholar 

  25. G. N. Fedotov, Yu. D. Tret’yakov, G. V. Dobrovol’skii, et al., “Enzymatic Reactions in Soils,” Dokl. Akad. Nauk 402(4), 497–500 (2005).

    Google Scholar 

  26. G. N. Fedotov, Yu. D. Tret’yakov, V. I. Putlyaev, et al., “Electron-Microscopic Study of Soil Colloidal Structures,” Dokl. Akad. Nauk 400(5) (2005).

  27. G. N. Fedotov, Yu. D. Tret’yakov, and A. I. Pozdnyakov, “Development of Residual Polarization under Unstable Water Filtration through Soil Colloidal Structures,” Dokl. Akad. Nauk 392(3), 350–355 (2003).

    Google Scholar 

  28. E. V. Shein, T. A. Arkhangel’skaya, V. M. Goncharov, et al., Field and Laboratory Methods of Studying Physical Properties and Regimes of Soils (Mosk. Gos. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  29. R. Julien, “Fractal Aggregates: Comments,” Cond. Mat. Phys. 13(4), 177–205 (1987).

    Google Scholar 

  30. A. S. Kirilov, E. I. Litvinenko, N. V. Astakhova, et al., “Instruments and Experimental Techniques,” Prib. Tekh. Eksp. 47(3), 334–336 (2004).

    Google Scholar 

  31. M. Konert and J. Vandenberghe, “Comparison of Laser Grain Analysis with Pipette and Sieve Analysis: A Solution for the Underestimation of the Clay Fraction,” Sedimentology 44, 523–535 (1997).

    Article  Google Scholar 

  32. P. Meakin, Time-Dependent Effects in Disordered Materials, Ed. by R. Pynn and T. Riste (Plenum, New York, 1987), pp. 45–70.

    Google Scholar 

  33. Yu. M. Ostanevich, “Time-of-Flight Small-Angle Scattering on Pulsed Neutron Sources,” Makrom. Chem., Macromol. Symp. 15, 91–103 (1988).

    Google Scholar 

  34. T. Rage, V. Frette, G. Wagner, et al., “Construction of a DLA Cluster Model,” Eur. J. Phys. 17, 110–115 (1996).

    Article  Google Scholar 

  35. W. G. Rothschild, Fractals in Chemistry (Wiley, New York, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.N. Fedotov, G.V. Dobrovol’skii, V.I. Putlyaev, A.V. Garshev, V.K. Ivanov, E.I. Pakhomov, 2006, published in Pochvovedenie, 2006, No. 7, pp. 824–835.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotov, G.N., Dobrovol’skii, G.V., Putlyaev, V.I. et al. Gel structures in soils. Eurasian Soil Sc. 39, 738–747 (2006). https://doi.org/10.1134/S1064229306070076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229306070076

Keywords

Navigation