Skip to main content
Log in

Substrate- and plant-mediated removal of citrate-coated silver nanoparticles in constructed wetlands

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The growing production and commercial application of engineered nanoparticles (ENPs), such as Ag, CeO2, and TiO2 nanoparticles, induce a risk to the environment as ENPs are released during their use. The comprehensive assessment of the environmental risk that the ENPs pose involves understanding their fate and behavior in wastewater treatment systems. Therefore, in this study, we investigate the effect of plants and different substrates on the retention and distribution of citrate-coated silver nanoparticles (Ag-NPs) in batch experimental setups simulating constructed wetlands (CWs). Sand, zeolite, and biofilm-coated gravel induce efficient removal (85, 55, and 67 %, respectively) of Ag from the water phase indicating that citrate-coated Ag-NPs are efficiently retained in CWs. Plants are a minor factor in retaining Ag as a large fraction of the recovered Ag remains in the water phase (0.42–0.58). Most Ag associated with the plant tissues is attached to or taken up by the roots, and only negligible amounts (maximum 3 %) of Ag are translocated to the leaves under the applied experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen WC, Hook PB, Biederman J a, Stein OR (2002) Wetlands and aquatic processes temperature and wetland plant species effects on wastewater treatment and root zone oxidation. J Environ Qual 31:1010–1016

    Article  CAS  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139. doi:10.1021/es7032718

    Article  CAS  Google Scholar 

  • Brunetti G, Donner E, Laera G, Sekine R, Scheckel KG, Khaksar M, et al. (2015) Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Res 77:72–84. doi:10.1016/j.watres.2015.03.003

    Article  CAS  Google Scholar 

  • Colman BP, Wang SY, Auffan M, Wiesner MR, Bernhardt ES (2012) Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment. Ecotoxicology 21(7):1867–1877. doi:10.1007/s10646-012-0920-5

    Article  CAS  Google Scholar 

  • Doiron K, Pelletier E, Lemarchand K (2012) Impact of polymer-coated silver nanoparticles on marine microbial communities: a microcosm study. Aquat Toxicol 124-125:22–27. doi:10.1016/j.aquatox.2012.07.004

    Article  CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. doi:10.1016/j.envint.2010.10.012

    Article  CAS  Google Scholar 

  • González AG, Mombo S, Leflaive J, Lamy A, Pokrovsky OS, Rols JL (2015) Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver. Environ Sci Pollut Res 22(11):8412–8424. doi:10.1007/s11356-014-3978-1

    Article  Google Scholar 

  • Huang L, Wang Z, Sun J, Miao L, Li Q, Yan Y, Zhao D (2000) Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals [5]. J Am Chem Soc 122(14):3530–3531. doi:10.1021/ja994240u

    Article  CAS  Google Scholar 

  • Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediation 15(2):142–153. doi:10.1080/15226514.2012.683209

    Article  CAS  Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands, 2nd edn. CRC Press, Boca Raton. doi:10.1201/9781420012514

    Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45(9):3902–3908. doi:10.1021/es1041892

  • Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, et al. (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47(12):3866–3877. doi:10.1016/j.watres.2012.11.060

    Article  CAS  Google Scholar 

  • Keller A a, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1(1):65–70. doi:10.1021/ez400106t

    Article  Google Scholar 

  • Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514. doi:10.1021/es101565j

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem/SETAC 27(9):1825–1851. doi:10.1897/08-090.1

    Article  CAS  Google Scholar 

  • Kroll A, Behra R, Kaegi R, Sigg L (2014) Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles. PLoS One 9(10). doi:10.1371/journal.pone.0110709

  • Lombi E, Donner E, Taheri S, Tavakkoli E, Jämting AK, McClure S, et al. (2013) Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–197. doi:10.1016/j.envpol.2013.01.029

    Article  CAS  Google Scholar 

  • Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, et al. (2012a) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036. doi:10.1021/es204608d

    Article  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012b) Transformations of nanomaterials in the environment. Environ Sci Technol 46(13):6893–6899. doi:10.1021/es300839e

    Article  CAS  Google Scholar 

  • Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, et al. (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46(2):752–759. doi:10.1021/es201686j

    Article  CAS  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239. doi:10.1021/es202995d

    Article  CAS  Google Scholar 

  • Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano 8(7):7208–7219. doi:10.1021/nn502228w

    Article  CAS  Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18(1):89–108. doi:10.1002/etc.5620180112

    Article  CAS  Google Scholar 

  • Sharif F, Westerhoff P, Herckes P (2013) Sorption of trace organics and engineered nanomaterials onto wetland plant material. Environ Sci: Process Impact 15(1):267. doi:10.1039/c2em30613a

    CAS  Google Scholar 

  • Shen C, Jin Y, Li B, Zheng W, Huang Y (2014) Facilitated attachment of nanoparticles at primary minima by nanoscale roughness is susceptible to hydrodynamic drag under unfavorable chemical conditions. Sci Total Environ 466-467:1094–1102. doi:10.1016/j.scitotenv.2013.07.125

    Article  CAS  Google Scholar 

  • Sheng Z, Liu Y (2011) Effects of silver nanoparticles on wastewater biofilms. Water Res 45(18):6039–6050 http://doi.org/10.1016/j.watres.2011.08.065

    Article  CAS  Google Scholar 

  • The Project of Emerging Nanotechnologies Consumer Product Inventory. (n.d.). Retrieved May 2, 2016, from http://www.nanotechproject.org/cpi

  • Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223(2):287–292. doi:10.1016/S0378-1097(03)00399-9

    Article  CAS  Google Scholar 

  • Van Koetsem F (2015) Identification of factors affecting the physicochemical behaviour and fate of engineered metallic nanoparticles released into aquatic environments. Ghent University, Ghent

    Google Scholar 

  • Van Ranst E, Verloo M, Demeyer A, Pauwels JM (1999) Manual for the soil chemistry and fertility laboratory: analytical methods for soil and plants equipment, and management of consumables. Ghent University, Ghent

    Google Scholar 

  • Velzeboer I, Quik JTK, van de Meent D, Koelmans A a (2014) Rapid settling of nanoparticles due to heteroaggregation with suspended sediment. Environ Toxicol Chem 33(8):1766–1773. doi:10.1002/etc.2611

    Article  CAS  Google Scholar 

  • Weber KP, Mitzel MR, Slawson RM, Legge RL (2011) Effect of ciprofloxacin on microbiological development in wetland mesocosms. Water Res 45(10):3185–3196. doi:10.1016/j.watres.2011.03.042

    Article  CAS  Google Scholar 

  • Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45(10):4422–4428. doi:10.1021/es104205a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Quenten Denon for the help with the PCS analysis and Roseline Blanckaert and Joachim Neri for the assistance with the silver analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannele Auvinen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Santiago V. Luis

Electronic supplementary material

Table S1

(XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auvinen, H., Sepúlveda, V.V., Rousseau, D.P.L. et al. Substrate- and plant-mediated removal of citrate-coated silver nanoparticles in constructed wetlands. Environ Sci Pollut Res 23, 21920–21926 (2016). https://doi.org/10.1007/s11356-016-7459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7459-6

Keywords

Navigation