Skip to main content
Log in

Particulate matter in the indoor and outdoor air of a gymnasium and a fronton

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An indoor/outdoor monitoring programme of PM10 was carried out in two sports venues (a fronton and a gymnasium). Levels always below 50 μg m−3 were obtained in the fronton and outdoor air. Due to the climbing chalk and the constant process of resuspension, concentrations above 150 μg m−3 were registered in the gymnasium. The chalk dust contributed to CO3 2− concentrations of 32 ± 9.4 μg m−3 in this sports facility, which represented, on average, 18 % of the PM10 mass. Here, the carbonate levels were 128 times higher than those registered outdoors. Much lower concentrations, around 1 μg m−3, were measured in the fronton. The chalk dust is also responsible for the high Mg2+ concentrations in the gym (4.7 ± 0.89 μg m−3), unfolding a PM10 mass fraction of 2.7 %. Total carbon accounted for almost 30 % of PM10 in both indoor spaces. Aerosol size distributions were bimodal and revealed a clear dependence on physical activities and characteristics of the sports facilities. The use of climbing chalk in the gymnasium contributed significantly to the coarse mode. The average geometric mean diameter, geometric standard deviation and total number of coarse particles were 0.77 μm, 2.79 cm−3 and 28 cm−3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EC:

Elemental carbon

EDS:

Energy dispersive X-ray spectrometer

FE-SEM:

Field emission scanning electron microscopy

GMD:

Geometric mean diameter

IAQ:

Indoor air quality

OC:

Organic carbon

PC:

Pyrolysed organic carbon

PCASP:

Passive cavity aerosol spectrometer probe

PM:

Particulate matter

TC:

Total carbon

VOCs:

Volatile organic compounds

References

  • Alados-Arboledas L, Lyamani H, Olmo FJ (2003) Aerosol size properties at Armilla, Granada (Spain). Q J Roy Meteor Soc 129:1395–1413

    Article  Google Scholar 

  • Almeida SM, Canha N, Silva A, Freitas MC, Pegas P, Alves C, Evtyugina M, Pio C (2011) Children exposure to air particulate matter in indoor of Lisbon primary schools. Atmos Environ 45:7594–7599

    Article  CAS  Google Scholar 

  • Alves CA, Calvo AI, Castro A, Fraile R, Evtyugina M, Bate-Epey EF (2013a) Indoor air quality in two university sports facilities. Aerosol Air Qual Res 13:1723–1730

    CAS  Google Scholar 

  • Alves C, Nunes T, Silva J, Duarte M (2013b) Comfort parameters and particulate matter (PM10 and PM2.5) in school classrooms and outdoor air. Aerosol Air Qual Res 13:1521–1535

    CAS  Google Scholar 

  • Bartley DL, Vicent JH (2011) Sampling conventions for estimating ultrafine and fine aerosol particle deposition in the human respiratory tract. Ann Occup Hyg 55:696–709

    Article  Google Scholar 

  • Batterman S, Du L, Mentz G, Mukherjee B, Parker E, Godwin C, Chin JY, O’Toole A, Robins T, Rowe Z, Lewis T (2012) Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners. Indoor Air 22:235–252

    Article  CAS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Braniš M, Šafránek J, Hytychová A (2009) Exposure of children to airborne particulate matter of different size fractions during indoor physical education at school. Build Environ 44:1246–1252

    Article  Google Scholar 

  • Braniš M, Šafránek J (2011) Characterization of coarse particulate matter in school gyms. Environ Res 111:485–491

    Article  Google Scholar 

  • Braniš M, Safránek J, Hytychova A (2011) Indoor and outdoor sources of size-resolved mass concentrations of particulate matter in a school gym—implications for exposure of exercising children. Environ Sci Pollut R 18:598–609

    Article  Google Scholar 

  • Buonanno G, Fuoco FC, Marini S, Stabile L (2012) Particle resuspension in school gyms during physical activities. Aerosol Air Qual Res 12:803–813

    Google Scholar 

  • Calvo AI, Pont V, Castro A, Mallet M, Palencia C, Roger JC, Dubuisson P, Fraile R (2010) Radiative forcing of haze during a forest fire in Spain. J Geophys Res 115, D08206

    Google Scholar 

  • Cambra-López M, Aarnink AJA, Zhao Y, Calvet S, Torres AG (2010) Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environ Pollut 158:1–17

    Article  Google Scholar 

  • Carlisle A, Sharp N (2001) Exercise and outdoor ambient air pollution. Brit J Sport Med 35:214–222

    Article  CAS  Google Scholar 

  • Donaldson K, Stone V, Gilmour PS, Brown DM, MacNee W (2000) Ultrafine particles: mechanisms of lung injury. Philos T Roy Soc A 358:2741–2748

    Article  CAS  Google Scholar 

  • Guo H, Kwok NH, Cheng HR, Lee SC, Hung WT, Li YS (2009) Formaldehyde and volatile organic compounds in Hong Kong homes: concentrations and impact factors. Indoor Air 19:206–217

    Article  CAS  Google Scholar 

  • Guo H, Lee SC, Chan LY (2004) Indoor air quality in ice skating rinks in Hong Kong. Environ Res 94:327–335

    Article  CAS  Google Scholar 

  • Hasan H, Dzubay TG (1983) Apportioning light extinction coefficients to chemical-species in atmospheric aerosol. Atmos Environ 17:1573–1581

    Article  CAS  Google Scholar 

  • Hong Kong Special Administrative Region (HKSAR) (2003) Guidance notes for the management of indoor air quality in offices and public Places. Indoor Air Quality Management Group. The Government of the Hong Kong Special Administrative Region. http://www.iaq.gov.hk/cert/doc/GN-eng.pdf. Accessed May 2014

  • Horvath H (1998) Influence of atmospheric aerosols upon the global radiation balance. In: Harrison RM, Van Grieken R (eds) Atmospheric particles IUPAC series on analytical and physical chemistry of environmental systems, vol 5. Wiley, New York, pp 543–596

    Google Scholar 

  • Huang H, Cao JJ, Lee SC, Zou CW, Chen XG, Fan SJ (2007) Spatial variation and relationship of indoor/outdoor PM2.5 at residential homes in Guangzhou city, China. Aerosol Air Qual Res 7:518–530

    CAS  Google Scholar 

  • Jia C, Batterman S, Godwin C, Charles S, Chin JY (2010) Sources and migration of volatile organic compounds in mixed-use buildings. Indoor Air 20:357–369

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Moller W (2006) Ultrafine particle-lung interactions: Does size matter? J Aerosol Med 19:74–83

    Article  CAS  Google Scholar 

  • Levin EJT, McMeeking GR, Carrico C, Mack L, Kreidenweis SM, Wold CE, Moosmüller H, Arnott WP, Hao WM, Collett JL, Malm WC (2010) Biomass burning smoke aerosol properties measured during FLAME. J Geophys Res 115:D18

    Google Scholar 

  • Lin ZJ, Tao J, Chai FH, Fan SJ, Yue JH, Zhu LH (2012) Impact of relative humidity and particles size distribution on aerosol light extinction in urban area of Guangzhou. Atmos Chem Phys Discuss 12:15639–15674

    Article  Google Scholar 

  • Majumdar D, William SPM (2009) Chalk dustfall during classroom teaching: particle size distribution and morphological characteristics. Environ Monit Assess 148:343–335

    Article  CAS  Google Scholar 

  • McCormack MC, Breysse PN, Hansel NN, Matsui EC, Tonorezos ES, Curtin-Brosnan J, Williams DL, Buckley TJ, Eggleston PA, Diette GB (2008) Common household activities are associated with elevated particulate matter concentrations in bedrooms of inner-city Baltimore pre-school children. Environ Res 106:148–155

    Article  CAS  Google Scholar 

  • Molinié J, Clotaire V, Plocoste R, Petit H (2011) Night outdoor air as a major source of indoor air particle concentrations in an office. In: Proceedings of the 91st American Meteorological Society, Washington, USA

  • Morawska L, Keogh DU, Thomas SB, Mengersen KL (2008) Modality in ambient particle size distributions and its potential as a basis for developing air quality regulation. Atmos Environ 42:1617–1628

    Article  CAS  Google Scholar 

  • Ortega IK, Suni T, Boy M, Grönholm T, Manninen HE, Nieminen T, Ehn M, Junninen H, Hakola H, Hellén H, Valmari T, Arvela H, Zegelin S, Hughe D, Kitchen M, Cleugh H, Worsnop DR, Kulmala M, Kerminen VM (2012) New insights into nocturnal nucleation. Atmos Chem Phys 12:4297–4312

    Article  CAS  Google Scholar 

  • Paintal HS, Kuschner WG (2010) Indoor sports. In: Tarlo SM, Cullinan P, Nemer B (eds) Occupational and environmental lung diseases. Wiley, Chichester, pp 137–157

    Chapter  Google Scholar 

  • Pegas PN, Nunes T, Alves CA, Silva JR, Vieira SLA, Caseiro A, Pio C (2012) Indoor and outdoor characterisation of organic and inorganic compounds in city centre and suburban elementary schools of Aveiro, Portugal. Atmos Environ 55:80–89

    Article  CAS  Google Scholar 

  • Perry RH, Green DW, Maloney JO (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Rundell KW (2003) High levels of airborne ultrafine and fine particulate matter in indoor ice arenas. Inhal Toxicol 15:237–250

    Article  CAS  Google Scholar 

  • Saldiva PHN, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy GGK, Diaz E, Koutrakis P, Suh H, Tsuda A, Godleski JJ (2002) Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Resp Crit Care 165:1610–1617

    Article  Google Scholar 

  • Salonen HJ, Pasanen AL, Lappalainen SK, Riuttala HM, Tuomi TM, Pasanen PO, Bäck BC, Reijula KE (2009) Airborne concentrations of volatile organic compounds, formaldehyde and ammonia in Finnish office buildings with suspected indoor air problems. J Occup Environ Hyg 6:200–209

    Article  CAS  Google Scholar 

  • Salonen RO, Pennanen AS, Vahteristo M, Korkeila P, Alm S, Randell JT (2008) Health risk assessment of indoor air pollution in Finnish ice arenas. Environ Int 34:51–57

    Article  Google Scholar 

  • Sangiorgi G, Ferrero L, Ferrini BS, Lo Porto C, Perrone MG, Zangrando R, Gambaro A, Lazzati Z, Bolzacchini E (2013) Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmos Environ 65:205–214

    Article  CAS  Google Scholar 

  • Semple S, Garden C, Coggins M, Galea KS, Whelan P, Cowie H, Sánchez-Jiménez A, Thorne PS, Hurley JF, Ayres JG (2012) Contribution of solid fuel, gas combustion, or tobacco smoke to indoor air pollutant concentrations in Irish and Scottish homes. Indoor Air 22:212–223

    Article  CAS  Google Scholar 

  • Skoog D, West D, Holler F (1996) Fundamentals of analytical chemistry, 7th edn. Saunders, USA

    Google Scholar 

  • Stranger M, Potgieter-Vermaak SS, van Grieken R (2007) Comparative overview of indoor air quality in Antwerp, Belgium. Environ Int 33:789–797

    Article  CAS  Google Scholar 

  • Stranger M, Potgieter-Vermaakand SS, van Grieken R (2008) Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air 18:454–463

    Article  CAS  Google Scholar 

  • Tang T, Hurraß J, Gminski R, Mersch-Sundermann V (2012) Fine and ultrafine particles emitted from laser printers as indoor air contaminants in German offices. Environ Sci Pollut R 19:3840–3849

    Article  CAS  Google Scholar 

  • Tang IN (1996) Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J Geophys Res 101:19250

    Google Scholar 

  • Texas Department of State Health Services (TDSHS) (2014). Texas voluntary indoor air quality guidelines for government buildings. Division of Regulatory Services. Austin, TX. Publication # 2–10, Jan. 2003. Updated Feb. 2014. https://www.dshs.state.tx.us/iaq/SchoolsGuide.shtm. Accessed May 2014

  • Weinbruch S, Dirsch T, Ebert M, Hofmann H, Kandler K (2008) Dust exposure in indoor climbing halls. J Environ Monit 10:648–654

    Article  CAS  Google Scholar 

  • Weinbruch S, Dirsch T, Kandler K, Ebert M, Heimburger G, Hohenwarter F (2012) Reducing dust exposure in indoor climbing gyms. J Environ Monit 14:2114–2120

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2010) WHO guidelines for indoor air quality: selected pollutants. WHO Regional Office for Europe, Bonn Office

    Google Scholar 

Download references

Acknowledgments

This study was partially funded by the Centre of Environmental and Marine Studies (CESAM) of the University of Aveiro (PEst-C/MAR/LA0017/2013) and by the Spanish Ministry of Science and Innovation (Grant TEC2010-19241-C02-01). The electron microscopy analyses were conducted at CNME-UCM through the AEROCLIMA project (Fundación Ramón Areces). Ana Calvo acknowledges the postdoctoral grant SFRH/BPD/64810/2009 from the Portuguese Science Foundation (FCT). We would also like to thank Darrel Baumgardner (Droplet Measurement Technologies, Boulder) for their valuable comments and support on the PCASP data corrections. Thanks to the Faculty of Physical Education and Sports, University of León, for allowing us the access to the sports facilities and also to Guillermo Arias and Elisa Estapé for their kindness and availability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia Alves.

Additional information

Responsible editor: Constantini Samara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C., Calvo, A.I., Marques, L. et al. Particulate matter in the indoor and outdoor air of a gymnasium and a fronton. Environ Sci Pollut Res 21, 12390–12402 (2014). https://doi.org/10.1007/s11356-014-3168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3168-1

Keywords

Navigation