Skip to main content
Log in

Water content of limestones submitted to realistic wet deposition: a CIME2 chamber simulation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An experimental chamber (CIME2) has been specially designed to simulate wet atmospheric deposition on limestones used in Paris cultural heritage. This instrument is a complementary tool to CIME, a previously developed chamber dedicated to the simulation of dry atmospheric deposition on monuments and artifacts. The aim of this paper is to describe CIME2 and characterize the wet deposits produced inside it. Mist (fog), drizzle, and rainfall are differentiated in order to document their ability to saturate the limestones most currently used in Paris monuments: The Saint-Maximin’s limestone, the Liais of Saint-Maximin, and the Chauvigny’s limestone are tested. The comparison between normalized and environmental petrophysical data shows that in the wet deposition simulations, limestones are not systematically water-saturated. Moreover, the realistic experimental conditions chosen favor a more rapid evaporation of the stone water. The quantification of the non-saturation state is a first step that has to be taken into account to improve the geochemical models used to predict the alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • AFNOR (1999) AFNOR B10-613, Méthodes d'essai pour pierres naturelles - Détermination du coefficient d'absorption d'eau par capillarité. Standard NF EN 1925. Association Française de Normalisation (AFNOR), Paris

  • AFNOR (2007) AFNOR B10-615, Méthodes d'essai des pierres naturelles - Détermination des masses volumiques réelle et apparente et des porosités ouverte et totale. Standard NF EN 1936. Association Française de Normalisation (AFNOR), Paris

  • ASTM D4404-10 (2010) Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. pp. 7

  • Ausset P, Crovisier JL, Del Monte M, Furlan V, Girardet F, Hammecker C, Jeannette D, Lefèvre R (1996) Experimental study of limestone and sandstone sulphation in polluted realistic conditions: the Lausanne atmospheric simulation chamber (LASC). Atmos Environ 30:3197–3207

    Article  CAS  Google Scholar 

  • Bernardi E, Chiavari C, Lenza B, Martini C, Morselli L, Ospitali F, Robbiola L (2009) The atmospheric corrosion of quaternary bronzes: the leaching action of acid rain. Corros Sci 51:159–170

    Article  CAS  Google Scholar 

  • Beysens D, Mongruel A, Acker K (2017) Urban dew and rain in Paris, France: occurrence and physico-chemical characteristics. Atmos Res 189:152–161

    Article  CAS  Google Scholar 

  • Bonazza A, Sabbioni C (2016) Composition and chemistry of crusts on stone. In: Brimblecombe P (ed) Air pollution reviews no. 5. Urban pollution and changes to materials and building surfaces. Imperial College Press, London, pp 103–123

    Chapter  Google Scholar 

  • Bonazza A, Messina P, Sabbioni C, Grossi CM, Brimblecombe P (2009) Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci Total Environ 407(6):2039–2050

    Article  CAS  Google Scholar 

  • Buhmann D, Dreybrodt W (1985) The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas. Chem Geol 48:189–211

    Article  CAS  Google Scholar 

  • Camuffo D (2016) Weathering of building materials. In: Brimblecombe P (ed) Air pollution reviews no. 5. Urban pollution and changes to materials and building surfaces. Imperial College Press, London, pp 19–64

    Chapter  Google Scholar 

  • Chabas A, Fouqueau A, Attoui M, Alfaro S, Petitmangin A, Bouilloux A, Saheb M, Coman A, Lombardo T, Grand N, Zapf P, Berardo R, Duranton M, Durand-Jolibois R, Jerome M, Pangui E, Correia JJ, Guillot I, Nowak S (2015) Characterization of CIME, an experimental chamber for simulating interactions between materials of the cultural heritage and the environment. Environ Sci Pollut Res 22:19170–19183

    Article  CAS  Google Scholar 

  • Chiavari C, Bernardi E, Martini C, Passarini F, Ospitali F, Robbiola L (2010) The atmospheric corrosion of quaternary bronzes: the action of stagnant rain water. Corros Sci 52:3002–3010

    Article  CAS  Google Scholar 

  • David C, Darot M, Jeannette D (1993) Pore structures and transport properties of sandstone. Transp Porous Media 11:161–177

    Article  CAS  Google Scholar 

  • Dewanckele J, De Kock T, Fronteau G, Derluyn H, Vontobel P, Dierick M, Van Hoorebeke L et al (2014) Neutron radiography and X-ray computed tomography for quantifying weathering and water uptake processes inside porous limestone used as building material. Mater Charact 88:86–99

    Article  CAS  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham, W. E. (ed.) Classification of carbonate rocks. American Association of Petroleum Geologists, Memoirs, 1:108–121

  • Folk RL (1959) Practical petrographical classification of limestones. Am Assoc Pet Geol Bull 43:1–38

    CAS  Google Scholar 

  • Franzoni E, Sassoni E (2011) Correlation between microstructural characteristics and weight loss of natural stones exposed to simulated acid rain. Sci Total Environ 412-413:278–285

    Article  CAS  Google Scholar 

  • Fripiat J, Chaussidon J, Jelli A (1971) Chimie physique des phénomènes de surfaces. Application aux oxydes et aux silicates. Edition Masson & Cie 387pp

  • Hammecker C, Jeannette D (1994) Modelling the capillary imbibition kinetics in sedimentary rocks: role of petrographical features. Transp Porous Media 17:285–303

    Article  Google Scholar 

  • Hammer E, Gysel M, Roberts GC, Elias T, Hofer J, Hoyle CR, Bukowiecki N, Dupont JC, Burnet F, Baltensperger U, Weingartner E (2014) Size-dependent particle activation properties in fog during the ParisFog 2012/13 field campaign. Atmos Chem Phys 14:10517–10533

    Article  Google Scholar 

  • Icomos (2008) Illustrated glossary on stone deterioration patterns ICOMOS International Scientific Committee for Stone (ISCS). 86 pages

  • Inkpen RJ, Viles HA, Moses C, Baily B, Collier P, Trudgill ST, Cooke RU (2012) Thirty years of erosion and declining atmospheric pollution at St Paul’s Cathedral, London. Atmos Environ 62:521–529

    Article  CAS  Google Scholar 

  • Le Moullec A, Mezdour A (2011) La qualité des eaux de pluie : acidité en baisse mais pas de progrès pour les dépôts d’azote. http://www.developpement-durable.gouv.fr/IMG/pdf/LPS88.pdf

  • Lefèvre RA, Ionescu A, Desplat J, Kounkou-Arnaud R, Perrussel O, Languille B (2016) Quantification and mapping of the impact of the recent air pollution abatement on limestone and window glass in Paris. Environ Earth Sci 75:1359

    Article  CAS  Google Scholar 

  • Livingston RA (1992) Graphical methods for examining the effects of acid rain and sulphur dioxide on carbonate stones. Proceedings of the 7th International Congress on Deterioration and Conservation of Stone, Lisbon, 375-386. In: J. Delgado Rodrigues, F. Henriques & F.Telmo Jeremias (eds)

  • Livingston RA (2016) Acid rain attack on outdoor sculpture in perspective. Atmos Environ 146:332–345

    Article  CAS  Google Scholar 

  • Merle D (2008) Stratotype Lutétien. Muséum National d’Histoire Naturelle, Paris; Edition Biotope, Mèze; BRGM, Orléans, 288p

  • Météofrance collectif (1971-2000) Statistiques climatiques de la France. 287p. http://www.meteofrance.fr/publications/nos-collections/climat/statistiques-climatiques-de-la-france-19712000

  • Pellerin FM, Zinszner B (2007) A geoscientist’s guide to petrophysics. IFP publication. Editions Technip

  • Plummer LN, Wigley TM (1976) The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure. Geochim Cosmochim Acta 40:191–202

    Article  CAS  Google Scholar 

  • Podzimec J (1997) Droplet concentration and size distribution in haze and fog. Stud Geophys Geod 41(3):277–296

    Article  Google Scholar 

  • Rousset B (2001) Transferts par capillarité et évaporation dans des roches – rôle des structures de porosité. Thèse de l’Université Louis Pasteur – Strasbourg 1. 220 pp.

  • Rousset-Tournier B, Mazerolle F, Geraud Y, Jeannette D (2003) Rock drying test monitored by x-ray computed tomography—the effect of saturation methods on drying behavior. In: Mees F, Swenner R, Van Geet M, Jacobs (eds) Application of X-ray computed tomography in the geosciences, vol 215. Geological Society, London, Special Publication, pp 117–125

    Google Scholar 

  • Sabbioni C (2003) Mechanisms of air pollution damage to stone. In: Brimblecombe P (ed) Air pollution reviews. The effects of air pollution on the built environment. Imperial College Press, London, pp 63–106

    Chapter  Google Scholar 

  • Saheb M, Chabas A, Mertz JD, Colas E, Rozenbaum O, Sizun JP, Nowak S, Gentaz L, Verney-Carron A (2016) Weathering of limestone after several decades in an urban environment. Corros Sci 111:742–752

    Article  CAS  Google Scholar 

  • Smith BJ, Viles HA (2006) Rapid, catastrophic decay of building limestones: thoughts on causes, effects and consequences. International Conference on Heritage, Weathering and Conservation Location, 1, 191–197. Edited by: Fort R, Alvarez De Buergo M, Gomez Heras M et al. Madrid. Spain

  • Steiger M (2016) Air pollution damage to stone. In: Brimblecombe P (ed) Air pollution reviews no. 5. Urban pollution and changes to materials and building surfaces. Imperial College Press, London, pp 65–101

    Chapter  Google Scholar 

  • Tétreault J, Dupont AL, Bégin P, Paris S (2013) The impact of volatile compounds released by paper on cellulose degradation in ambient hygrothermal conditions. Polym Degrad Stab 98:1827–1837

    Article  CAS  Google Scholar 

  • Turmel A, Fronteau G, Thomachot-Schneider C, Moreau C, Chalumeau L, Barbin V (2014) Stone uses in Reims Cathedral: provenance, physical properties and restoration phases. In: Cassar J, Winter MG, Marker BR, NRG W, Entwisle DC, Bromhead EN, JWN S (eds) Stone in historic buildings: characterization and performance, vol 391. Geological Society, London, Special Publication, pp 17–30

    Google Scholar 

  • Unterwurzacher M, Mirwald P (2008) Initial stages of carbonate weathering: climate chamber studies under realistic pollution conditions. Environ Geol 56:507–519

    Article  CAS  Google Scholar 

  • Zinszner B, Meynot C (1982) Visualisation des propriétés capillaires des roches réservoirs. Rev Inst Fr Pétrole 37:337–361

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the DIM R2DS French Regional Program (2013–2017) and the French National Research Agency (ANR JCJC GLAM Project (2014–2018). The authors thank J. Vatteville from LaVision for the PDI measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Chabas.

Additional information

Responsible editor: Michel Sablier

Highlights

• An experimental chamber designed for studying wet deposition on cultural heritage materials is described and characterized.

• Petrophysical measurements are performed in simulated Parisian environment.

• Rainfall, drizzle, and mist deposits are differentiated to evaluate their ability to saturate different porous networks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabas, A., Sizun, JP., Gentaz, L. et al. Water content of limestones submitted to realistic wet deposition: a CIME2 chamber simulation. Environ Sci Pollut Res 25, 23973–23985 (2018). https://doi.org/10.1007/s11356-018-2433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2433-0

Keywords

Navigation