Skip to main content

Advertisement

Log in

Development of an Ecologic Marine Classification in the New Zealand Region

  • PROFILE
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

We describe here the development of an ecosystem classification designed to underpin the conservation management of marine environments in the New Zealand region. The classification was defined using multivariate classification using explicit environmental layers chosen for their role in driving spatial variation in biologic patterns: depth, mean annual solar radiation, winter sea surface temperature, annual amplitude of sea surface temperature, spatial gradient of sea surface temperature, summer sea surface temperature anomaly, mean wave-induced orbital velocity at the seabed, tidal current velocity, and seabed slope. All variables were derived as gridded data layers at a resolution of 1 km. Variables were selected by assessing their degree of correlation with biologic distributions using separate data sets for demersal fish, benthic invertebrates, and chlorophyll-a. We developed a tuning procedure based on the Mantel test to refine the classification’s discrimination of variation in biologic character. This was achieved by increasing the weighting of variables that play a dominant role and/or by transforming variables where this increased their correlation with biologic differences. We assessed the classification’s ability to discriminate biologic variation using analysis of similarity. This indicated that the discrimination of biologic differences generally increased with increasing classification detail and varied for different taxonomic groups. Advantages of using a numeric approach compared with geographic-based (regionalisation) approaches include better representation of spatial patterns of variation and the ability to apply the classification at widely varying levels of detail. We expect this classification to provide a useful framework for a range of management applications, including providing frameworks for environmental monitoring and reporting and identifying representative areas for conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

Literature Cited

  • Austin M. P., T. M. Smith. 1989. A new model for the continuum concept. Vegetatio 83:35–47

    Article  Google Scholar 

  • Bailey R. G. 1998. Ecoregions: the ecosystem geography of the oceans and the continents. Springer-Verlag, New York, NY

    Google Scholar 

  • Belbin L. 1993. Environmental representativeness: regional partitioning and reserve selection. Biological Conservation 66:223–230

    Article  Google Scholar 

  • Belbin, L. 1995. PATN analysis package. Division of Sustainable Ecosystems, CSIRO, Canberra, Australia

  • Bourgeron P. S., H. C. Humphries, M. E. Jensen. 2001. Ecosystem characterization and ecological assessments. In M. E. Jensen, P. S. Bourgeron (eds.), A guidebook for integrated ecological assessments. Springer-Verlag, New York, NY. Pages 40–54

    Google Scholar 

  • Bunce R. G. H., C. J. Barr, R. T. Clarke, D. C. Howard, A. M. J. Lane. 1996. Land classification for strategic ecological survey. Journal of Environmental Management 47:37–60

    Article  Google Scholar 

  • Caddy J. F., A. Bakum. 1994. A tentative classification of coastal marine ecosystems based on dominant processes of nutrient supply. Ocean and Coastal Management 23:201–211

    Article  Google Scholar 

  • Campbell J. W., J. M. Blaisdell, M. Darzi. 1995. Level-3 SeaWiFS data products: spatial and temporal binning algorithms. In S. B. Hooker, E. R. Firestone (eds.), NASA Technical Memorandum 104566. Volume 32. NASA Goddard Space Flight Centre, Washington, DC. Pages xx-xx

    Google Scholar 

  • CANZ. 1997. New Zealand region bathymetry. NIWA Chart Miscellaneous Series No. 73. Wellington, New Zealand

  • Carpenter C. A., W. N. Busch, D. T. Clelend, J. Gallegos, R. Harris, R. Holm, and others 1999. The use of ecological classification in management. Pages 395–430 in N. C. Johnson, A. J. Mack, W. T. Sexton, R. C. Szaro (eds.), Ecological stewardship: a common reference for ecosystem management. Elsevier Science, Amsterdam, The Netherlands

  • Christensen N. L., A. M. Bartuska, J. H. Brown, S. Carpenter, C. D’Antionio, R. Francis, and others 1996. The report of the ecological society of American Committee on the Scientific Basis for Ecosystem Management. Ecological Applications 6:665–691

  • Clark, H. E. S., and D. G. McKnight. 2000. The marine fauna of New Zealand: Echinodermata: Asteroidea (sea-stars): Order Paxillosida, order Notomyotida. NIWA Biodiversity Memoir 116

  • Clark, H. E. S., and D. G. McKnight. 2001. The marine fauna of New Zealand: Echinodermata: Asteroidea (sea-stars): Order Valvatida. NIWA Biodiversity Memoir 117

  • Clarke K. R., R. H. Green. 1988. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46:213–226

    Google Scholar 

  • Clarke K. R., R. M. Warwick 2001. Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, Plymouth, UK

    Google Scholar 

  • Davies J. A., W. Schertzer, M. Nunez. 1975. Estimating global solar radiation. Boundary-Layer Meteorology 9:33–52

    Article  Google Scholar 

  • De’ath G., K. E. Fabricius. 2002. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178––3192

    Article  Google Scholar 

  • Detenbeck N. E., S. L. Batterman, V. L. Brady, J. C. Brazner, V. N. Snarski, D. L. Taylor, and others 2000. A test of watershed classification systems for ecological risk assessment. Environmental Toxicology and Chemistry 19:1174–1181

  • Economic and Social Research Institute. 1992. Understanding GIS. The ARC/INFO method. Economic and Social Research Institute, Redlands, CA.

    Google Scholar 

  • Ferrier S., M. Drielsma, G. Manion, G. Watson. 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Community-level modelling. Biodiversity and Conservation 11:2309–2338

    Article  Google Scholar 

  • Francis M. P., R. J. Hurst, B. H. McArdle, N. W. Bagley, O. F. Anderson. 2002. New Zealand demersal fish assemblages. Environmental Biology of Fishes 65:215–234

    Article  Google Scholar 

  • Genin A. 2004. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. Journal of Marine Systems 50:3–20

    Article  Google Scholar 

  • Gilberto D.A., C. S. Bremec, E. M. Acha, H. Mianzan 2004. Large-scale spatial patterns of benthic assemblages in the SW Atlantic: the Rĭo de la Plata estuary and adjacent shelf waters. Estuarine, Coastal, and Shelf Science 61:1–13

    Article  CAS  Google Scholar 

  • Glover A.G., C.R. Smith. 2003. The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025. Environmental Conservation 30:219–241

    Article  Google Scholar 

  • Gordon D.P. 2000. The Pacific Ocean and global OBIS: a New Zealand perspective. Oceanography 13:41–47

    Google Scholar 

  • Gorman R. M., K. R. Bryan, A. K. Laing. 2003. A wave hindcast for the New Zealand region—deep water wave climate. New Zealand Journal of Marine and Freshwater Research 37:589–612

    Google Scholar 

  • Grossman D. H., P. S. Bourgeron, W. D. N. Bush, D. Cleland, W. Platts, G. C. Ray, and others. 1999. Principles for ecological classification. Pages 353–393 in N. C. Johnson, A. J. Mack, W. T. Sexton, and R. C. Szaro (eds.), Ecological stewardship: a common reference for ecosystem management. Elsevier Science, Amsterdam, The Netherlands

  • Hargrove W. W., F. M. Hoffman. 2005. Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environmental Management 34 (Suppl 1):S39–S60

    Google Scholar 

  • Hastie T., R. Tibshirani. 1987. Generalized additive models: Some applications. Journal of the American Statistical Association 82:371–386

    Article  Google Scholar 

  • Hayden B. P., G. C. Ray, R. Dolan. 1984. Classification of coastal and marine environments. Environmental Conservation 11:199–207

    Article  Google Scholar 

  • Holling C. S. 1980. Adaptive environmental assessment and management. Wiley, Bath, UK

    Google Scholar 

  • Jones, D. 2003. Fathom: a MATLAB toolbox for ecological and oceanographic data analysis. University of Miami—RSMAS, Department of Marine Biology and Fisheries. Available at: http://www.rsmas.miami.edu/personal/djones Accessed: 20 MARCH 2006

  • Karakassis I., A. Eleftheriou. 1997. The continental shelf of Crete: structure of macrobenthic communities. Marine Ecology Progress Series 160:185–196

    Google Scholar 

  • Lance G. N., W. T. Williams. 1967. A general theory of classificatory sorting strategies. Computing Journal 9:373–380

    Google Scholar 

  • Leathwick J. R., J. M. Overton, M. McLeod. 2003. An environmental domain analysis of New Zealand and its application to biodiversity conservation. Conservation Biology 17:1612–1623

    Article  Google Scholar 

  • Longhurst A. 1998. Ecological geography of the sea. Academic, London, UK

    Google Scholar 

  • Manly B. F. J. 1986. Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Researches on Population Ecology 28:201–218

    Article  Google Scholar 

  • Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27:209–220

    CAS  Google Scholar 

  • Margules C. R., R. L. Pressey. 2000. Systematic conservation planning. Nature 405:243–253

    Article  CAS  Google Scholar 

  • Martin S. 2004. An introduction to ocean remote sensing. Cambridge University Press, UK

    Google Scholar 

  • McClain C. R., M. L. Cleave, G. C. Feldman, W. W. Gregg, S. Hooker. 1998. Science quality SeaWiFS data for global-scale applications. Sea Technology 39:10–15

    Google Scholar 

  • McKnight D.G. 1969. Infaunal benthic communities of the New Zealand continental shelf. New Zealand Journal of Marine and Freshwater Research 3:409–444

    Google Scholar 

  • McKnight, D. G. 2000. The marine fauna of New Zealand: basket-stars and snake-stars echinoderrmata: Ophiuroidea: Euryalinida. NIWA Biodiversity Memoir 115

  • Mitchell, J. S., L. Carter, and J. C. McDougal. 1989. New Zealand region sediment 1:6,000.000 Miscellaneous Series No. 67

  • Mücher, C. A., R. G. H. Bunce, R. H. G. Jongman, J. A. Klijn, A. J. M. Koomen, M. J. Metzger, and others. 2003. Identification and characterisation of environments and landscapes in Europe. Alterra-Rapport 832

  • Nelson W.A., D. P. Gordon. 1997. Assessing New Zealand’s marine biological diversity—a challenge for policy makers and systematists. New Zealand Science Review 54:58–66

    Google Scholar 

  • Olsen D. M., E. Dinerstein, E. D. Wikramanaya, N. D. Burgess, G. V. N. Powell, E. C. Underwood, and others 2001. Terrestrial ecoregions of the world: a new map of life on earth. BioScience 54:933–938

  • Olsgard F., P. J. Somerfield. 2000. Surrogates in marine benthic investigations—Which taxonomic unit to target? Journal of Aquatic Ecosystem Stress and Recovery 7:25–42

    Article  Google Scholar 

  • O’Reilly J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, and others. 1998. Ocean colour chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research 103:24937–24953

    Google Scholar 

  • Parsons T. R., M. Takahashi, B. Hargrave. 1984. Biological oceanographic processes. Pergamon, Oxford, UK

    Google Scholar 

  • Rees H. L., M.A. Pendle, R. Waldcock, D.S. Limpenny, S. E. Boyd. 1999. A comparison of benthic biodiversity in the North Sea, English Channel, and Celtic Seas. ICES Journal of Marine Sciences 56:228–246

    Article  Google Scholar 

  • Ridgway K. R., J. R. Dunn, J. L. Wilkin. 2001. Ocean interpolation by four-dimensional least squares—application to the waters around Australia. Journal of Atmospheric and Oceanic Technology 19:1357–1375

    Article  Google Scholar 

  • Roff J.C., Taylor M. E., Laughren J. 2003. Geophysical approaches to the classification, delineation and monitoring of marine habitats and their communities. Aquatic Conservation: Marine and Freshwater Ecosystems 13:77–90

    Article  Google Scholar 

  • Rogers A. D. 1994 The biology of seamounts. Advances in Marine Biology 30:305–350

    Article  Google Scholar 

  • Rossow W. B., R. A. Schiffer. 1999. Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society 80:2261–2288

    Article  Google Scholar 

  • Sneath P. H. A., R. R. Sokal. 1973. Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Francisco, CA

    Google Scholar 

  • Snelder, T., J. Leathwick, K. Dey, M. Weatherhead, G. Fenwick, M. Francis, and others. 2005. The New Zealand marine environment classification. Ministry for the Environment. Available at: http://www.niwa.co.nz\ncco\mec. Accessed:

  • Snelder T. H., B. J. F. Biggs. 2002. Multi-scale river environment classification for water resources management Journal of the American Water Resources Association 38:1225–1240

    Google Scholar 

  • ter Braak C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Thistle D. 2003. The deep-sea floor: An overview. In P. A. Tyler (ed.) Ecosystems of the world. Elsevier, New York, NY. Pages 1–37

    Google Scholar 

  • Trakhtenbrot A., R. Kadmon. 2005. Environmental cluster analysis as a tool for selecting complementary networks of conservation sites Ecological Applications 15:335–345

    Google Scholar 

  • Uddstrom M. J., N. A. Oien. 1999. On the use of high resolution satellite data to describe the spatial and temporal variability of sea surface temperatures in the New Zealand region. Journal of Geophysical Research 104:20729–20751

    Article  Google Scholar 

  • Van Hoey G., S. Degraer, and M. Vincx. 2004. Macrobenthic community structure of soft-bottom sediments at the Belgian Continental Shelf. Estuarine, Coastal, and Shelf Science 59:599–613

    Google Scholar 

  • Walters C. J. 1986. Adaptive management of renewable resources. Macmillan, New York, NY

    Google Scholar 

  • Walters R. A., D. G. Goring, R. G. Bell. 2001. Ocean tides around New Zealand. New Zealand Journal of Marine and Freshwater Research 35:567–579

    Article  Google Scholar 

  • Warwick R. M., Uncles R. J. 1980. Distribution of benthic macrofauna associations in the Bristol Channel in relation to tidal stress. Marine Ecology Progress Series 3:97–103

    Google Scholar 

  • Zacharias M. A., D. E. Howes, J. R. Harper, P. Wainwright. 1998. The British Columbia marine ecosystem classification: rationale, development, and verification. Coastal Management 26:105–124

    Article  Google Scholar 

  • Zajac R.N., R. S. Lewis, L. J. Poppe, D. C. Twichell, J. Vozarik, M. L. DiGiacomo-Cohen. 2000. Relationships among sea-floor structure and benthic communities in Long Island Sound at regional and benthoscape scales. Journal of Coastal Research 16:627–640.

    Google Scholar 

Download references

Acknowledgments

We are grateful for funding of the MEC project by the New Zealand Ministry for the Environment, Department of Conservation and Ministry of Fisheries and in particular Megan Linwood and Kirsty Johnston of the New Zealand Ministry for the Environment for their support. We thank Don Robertson of NIWA for stewardship of this project. We also thank the advisory group for their contribution to this project. We acknowledge the contributions of our colleagues, in particular Geoff Read, who groomed the invertebrate data, and Ude Shankar and Helen Hurren, who handled the GIS aspects. NIWA’s Fisheries Science Fund supported the preparation of this article. Finally, we thank Naomi Detenbeck and an anonymous reviewer whose comments improved our original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ton H. Snelder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snelder, T.H., Leathwick, J.R., Dey, K.L. et al. Development of an Ecologic Marine Classification in the New Zealand Region. Environmental Management 39, 12–29 (2007). https://doi.org/10.1007/s00267-005-0206-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-005-0206-2

Keywords

Navigation