Skip to main content
Log in

Crystal structure of britvinite [Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)]: A new layered silicate with an original type of silicon-oxygen networks

  • Structure of Inorganic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The crystal structure of a new mineral britvinite Pb7.1Mg4.5(Si4.8Al0.2O14)(BO3)(CO3)[(BO3)0.7(SiO4)0.3](OH, F)6.7 from the Lángban iron-manganese skarn deposit (Värmland, Sweden) is determined at T = 173 K using X-ray diffraction (Stoe IPDS diffractometer, λMoKα, graphite monochromator, 2θmax = 58.43°, R = 0.052 for 6262 reflections). The main crystal data are as follows: a = 9.3409(8) Å, b = 9.3579(7) Å, c = 18.8333(14) Å, α = 80.365(6)°, β = 75.816(6)°, γ = 59.870(5)°, V = 1378.7(2) Å3, space group P1, Z = 2, and ρcalcd = 5.42 g/cm3. The idealized structural formula of the mineral is represented as [Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)]. It is demonstrated that the mineral britvinite is a new representative of the group of mica-like layered silicates with structures in which three-layer (2: 1) “sandwiches” composed of tetrahedra and octahedra alternate with blocks of other compositions, such as oxide, oxide-carbonate, oxide-carbonate-sulfate, and other blocks. The tetrahedral networks (Si5O14)∞∞ consisting of twelve-membered rings are fragments of the britvinite structure. Similar networks also form crystal structures of the mineral zeophyllite and the synthetic phase Rb6Si10O23. In the crystal structures under consideration, the tetrahedral networks differ in the rotation of tetrahedra with respect to the layer plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Chukanov, O. V. Yakubovich, I. V. Pekov, et al., Zap. Vseross. Mineral. O-va, Part 136, No. 6, 18 (2007).

  2. STOE and Cie: Imaging Plate Diffraction System (IPDS), Version 2.90 (STOE and Cie, Darmstadt, Germany, 1999).

  3. G. M. Sheldrick, SHELXS97: Program for the Solution of Crystal Structures (University of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  4. G. M. Sheldrick, SHELXL97: Program for the Refinement of Crystal Structures from Diffraction Data (University of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  5. International Tables for Crystallography, Vol. C: Mathematical, Physical, and Chemical Tables, Ed. by E. Prince, 3rd ed. (Kluwer, Dordrecht, The Netherlands, 2004), Tables 4.2.6.8 and 6.1.14.

    Google Scholar 

  6. O. V. Yakubovich, I. M. Still, P. G. Gavrilenko, and V. S. Urusov, Kristallografiya 50(2), 226 (2005) [Crystallogr. Rep. 50 (2), 194 (2005)].

    Google Scholar 

  7. O. Crottaz, F. Kubel, and H. Schmid, J. Solid State Chem. 120, 60 (1995).

    Article  ADS  Google Scholar 

  8. S. V. Krivovichev and C. Burns, Mineral. Mag. 64, 1069 (2000).

    Article  Google Scholar 

  9. G. Giuseppetti, F. Mazzi, and C. Tadini, Neues Jahrb. Mineral., Monatsh., No. 6, 255 (1990).

  10. I. M. Steele, J. J. Pluth, and A. Livingstone, Mineral. Mag. 62, 451 (1998).

    Article  Google Scholar 

  11. I. M. Steele, J. J. Pluth, and A. Livingstone, Eur. J. Mineral. 11, 493 (1999).

    Google Scholar 

  12. H. I. Strunz and E. N. Nickel, Strunz Mineralogical Tables (E. Schweizerbart’sche, Stuttgart, Germany, 2001).

    Google Scholar 

  13. S. P. Saburov, S. N. Britvin, G. K. Bekenova, et al., Am. Mineral. 90, 1163 (2005).

    Article  Google Scholar 

  14. M. Uehara, A. Yamazaki, and S. Tsutsumi, Am. Mineral. 82, 416 (1997).

    Google Scholar 

  15. A. R. Kampf, L. L. Jackson, G. B. Sidder, et al., Am. Mineral. 77, 1107 (1992).

    Google Scholar 

  16. P. J. Dunn, R. S. W. Braithwaite, A. C. Roberts, and R. A. Ramik, Am. Mineral. 75, 702 (1990).

    Google Scholar 

  17. M. J. Wilson, J. D. Russel, J. M. Tait, et al., Mineral. Mag. 48, 127 (1984).

    Article  Google Scholar 

  18. R. V. Gaines, P. B. Leavens, and J. A. Nelen, Am. Mineral. 64, 355 (1979).

    Google Scholar 

  19. D. E. Appleman, H. T. Evans, G. L. Nord, et al., Mineral. Mag. 51, 417 (1987).

    Article  Google Scholar 

  20. S. Merlino, Acta Crystallogr., Sect. B: Struct. Sci. 28, 2726 (1972).

    Article  Google Scholar 

  21. W. Mikenda, F. Pertlik, P. Povondra, and J. Ulrych, Mineral. Petrol. 61, 199 (1997).

    Article  ADS  Google Scholar 

  22. N. V. Belov, Essays on Structural Mineralogy (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  23. A. E. Lapshin, N. V. Borisova, V. M. Ushakov, and Yu. F. Shepelev, Zh. Neorg. Khim. 51(3), 487 (2006) [Russ. J. Inorg. Chem. 51 (3), 438 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yakubovich.

Additional information

Original Russian Text © O.V. Yakubovich, W. Massa, N.V. Chukanov, 2008, published in Kristallografiya, 2008, Vol. 53, No. 2, pp. 233–242.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakubovich, O.V., Massa, W. & Chukanov, N.V. Crystal structure of britvinite [Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)]: A new layered silicate with an original type of silicon-oxygen networks. Crystallogr. Rep. 53, 206–215 (2008). https://doi.org/10.1134/S1063774508020077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774508020077

PACS numbers

Navigation