Skip to main content

Advertisement

Log in

Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The movement of water can have a significant influence on the vulnerability of hermatypic corals to environmental disturbances such as cyclone damage, heat stress and anoxia. Here, we explore the relationship between small reef-scale water circulation patterns and measured differences in the abundance, composition and vulnerability of coral assemblages over decades. Changes in coral cover and community structure within Bill’s Bay (Ningaloo Reef, Western Australia) over a 22-yr period, during which multiple disturbance events (including mass bleaching, anoxia, and tropical cyclones) have impacted the area, were compared with spatial variation in water residence times (WRT). We found that reef sites associated with longer water residence times (WRT >15 h) experienced higher rates of coral mortality during acute environmental disturbances compared to reef sites with shorter WRT. Shifts in coral community composition from acroporid to faviid-dominated assemblages were also more prominent at sites with long WRT compared to reef sites with shorter WRT, although shifts in community composition were also observed at sites close to shore. Interestingly, these same long-WRT sites also tended to have the fastest recovery rates so that coral cover was returned to original levels of approximately 20% over two decades. This study provides empirical evidence that spatial patterns in water circulation and flushing can influence the resilience of coral communities, thus identifying areas sensitive to emerging threats associated with global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1973) Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60:255–265

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Armstrong S (2007) Ningaloo Marine Park Drupella long-term monitoring program: results of the 2006 survey. Data report NIN/NMP-2007/03 Marine Science Program, Department of Environment and Conservation, Perth, Western Australia (unpublished report)

  • Baird A, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141

    Article  Google Scholar 

  • Baird ME, Atkinson MJ (1997) Measurement and prediction of mass transfer to experimental coral reef communities. Limnol Oceanogr 42:1685–1693

    Article  Google Scholar 

  • Bak RP (1978) Lethal and sublethal effects of dredging on reef corals. Mar Pollut Bull 9:14–16

    Article  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Berkelmans R (2009) Bleaching and mortality thresholds: how much is too much? In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer, Berlin, pp 103–119

    Chapter  Google Scholar 

  • Berkelmans R, De’ath G, Kininmonth S, Skirving WJ (2004) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs 23:74–83

    Article  Google Scholar 

  • Berumen ML, Pratchett MS (2006) Recovery without resilience: persistent disturbance and long-term shifts in the structure of fish and coral communities at Tiahura Reef, Moorea. Coral Reefs 25:647–653

    Article  Google Scholar 

  • Brown E, Cox E, Jokiel P, Rodgers K, Smith W, Tissot B, Coles SL, Hultquist J (2004) Development of benthic sampling methods for the Coral Reef Assessment and Monitoring Program (CRAMP) in Hawai’i. Pacific Science 58:145–158

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2001) Kullback-Leibler information as a basis for strong inference in ecological studies. Wildl Res 28:111–119

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Netherlands

    Google Scholar 

  • Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, Moore PJ, Brown CJ, Bruno JF, Duarte CM, Halpern BS, Hoegh-Guldberg O, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Sydeman WJ, Ferrier S, Williams KJ, Poloczanska ES (2014) Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492–495

    Article  CAS  PubMed  Google Scholar 

  • Burt J, Bartholomew A, Usseglio P (2008) Recovery of corals a decade after a bleaching event in Dubai, United Arab Emirates. Mar Biol 154:27–36

    Article  Google Scholar 

  • Cacciapaglia C, van Woesik R (2015) Reef-coral refugia in a rapidly changing ocean. Glob Chang Biol 21:2272–2282

    Article  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6 user manual and program. Primer-E Ltd, Plymouth, UK

    Google Scholar 

  • Coker DJ, Wilson SK, Pratchett MS (2013) Importance of live coral habitat for reef fishes. Rev Fish Biol Fish 24:89–126

    Article  Google Scholar 

  • Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish 9:286–307

    Article  Google Scholar 

  • Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67:461–488

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109:17995–17999

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayton PK (1971) Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389

    Article  Google Scholar 

  • Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Bio Ecol 115:67–77

    Article  Google Scholar 

  • Depczynski M, Gilmour JP, Ridgway T, Barnes H, Heyward AJ, Holmes TH, Moore JAY, Radford BT, Thomson DP, Tinkler P, Wilson SK (2013) Bleaching, coral mortality and subsequent survivorship on a west Australian fringing reef. Coral Reefs 32:233–238

    Article  Google Scholar 

  • Enquist BJ, Enquist CA (2011) Long-term change within a neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Glob Chang Biol 17:1408–1424

    Article  Google Scholar 

  • Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull 64:1737–1765

    Article  CAS  PubMed  Google Scholar 

  • Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    Article  CAS  PubMed  Google Scholar 

  • Facon M, Pinault M, Obura D, Pioch S, Pothin K, Bigot L, Garnier R, Quod J-P (2016) A comparative study of the accuracy and effectiveness of line and point intercept transect methods for coral reef monitoring in the southwestern Indian Ocean islands. Ecol Indic 60:1045–1055

    Article  Google Scholar 

  • Falter JL, Atkinson MJ, Merrifield MA (2004) Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol Oceanogr 49:1820–1831

    Article  CAS  Google Scholar 

  • Falter JL, Lowe RJ, Zhang Z, McCulloch M (2013) Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PLoS One 8:e53303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falter JL, Zhang Z, Lowe RJ, McGregor F, Keesing J, McCulloch MT (2014) Assessing the drivers of spatial variation in thermal forcing across a nearshore reef system and implications for coral bleaching. Limnol Oceanogr 59:1241–1255

    Article  Google Scholar 

  • Fan T-Y, Dai C-F (1999) Reproductive plasticity in the reef coral Echinopora lamellosa. Mar Ecol Prog Ser 190:297–301

    Article  Google Scholar 

  • Game ET, McDonald-Madden E, Puotinen ML, Possingham HP (2008) Should we protect the strong or the weak? Risk, resilience, and the selection of marine protected areas. Conserv Biol 22:1619–1629

    Article  PubMed  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Gove JM, Williams GJ, McManus MA, Heron SF, Sandin SA, Vetter OJ, Foley DG (2013) Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems. PLoS One 8:e61974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham EM, Baird AH, Connolly SR (2008) Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27:529–539

    Article  Google Scholar 

  • Graham NAJ, Nash KL, Kool JT (2011) Coral reef recovery dynamics in a changing world. Coral Reefs 30:283–294

    Article  Google Scholar 

  • Graham NAJ, Jennings S, MacNeil MA, Mouillot D, Wilson SK (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97

    Article  CAS  PubMed  Google Scholar 

  • Halford AR, Perret J (2009) Patterns of recovery in catastrophically disturbed reef fish assemblages. Mar Ecol Prog Ser 383:261–272

    Article  Google Scholar 

  • Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, Alexander MA, Scott JD, Alade L, Bell RJ, Chute AS, Curti KL, Curtis TH, Kircheis D, Kocik JF, Lucey SM, McCandless CT, Milke LM, Richardson DE, Robillard E, Walsh HJ, McManus MC, Marancik KE, Griswold CA (2016) A vulnerability assessment of fish and invertebrates to climate change on the northeast U.S. continental shelf. PLoS One 11:e0146756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinrichs S, Patten NL, Feng M, Strickland D, Waite AM (2013) Which environmental factors predict seasonal variation in the coral health of Acropora digitifera and Acropora spicifera at Ningaloo Reef? PLoS One 8:e60830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263

    Article  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  PubMed  Google Scholar 

  • Hurvich CM, Tsai C-L (1993) A corrected Akaike information criterion for vector autoregressive model selection. J Time Ser Anal 14:271–279

    Article  Google Scholar 

  • Jokiel PL (1978) Effects of water motion on reef corals. J Exp Mar Bio Ecol 35:87–97

    Article  Google Scholar 

  • Kaiser MJ, Clarke KR, Hinz H, Austen MCV, Somerfield PJ, Karakassis I (2006) Global analysis of response and recovery of benthic biota to fishing. Mar Ecol Prog Ser 311:1–14

    Article  Google Scholar 

  • Karlson RH, Hurd LE (1993) Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12:117–125

    Article  Google Scholar 

  • Legendre P, Fortin M-J (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138

    Article  Google Scholar 

  • Lenihan HS, Holbrook SJ, Schmitt RJ, Brooks AJ (2011) Influence of corallivory, competition, and habitat structure on coral community shifts. Ecology 92:1959–1971

    Article  PubMed  Google Scholar 

  • Lenihan HS, Adjeroud M, Kotchen MJ, Hench JL, Nakamura T (2008) Reef structure regulates small-scale spatial variation in coral bleaching. Mar Ecol Prog Ser 370:127–141

    Article  Google Scholar 

  • Lenihan HS, Hench JL, Holbrook SJ, Schmitt RJ, Potoski M (2015) Hydrodynamics influence coral performance through simultaneous direct and indirect effects. Ecology 96:1540–1549

    Article  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Lesser MP, Weis VM, Patterson MR, Jokiel PL (1994) Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): diffusion barriers, inorganic carbon limitation, and biochemical plasticity. J Exp Mar Bio Ecol 178:153–179

    Article  CAS  Google Scholar 

  • Leujak W, Ormond RFG (2007) Comparative accuracy and efficiency of six coral community survey methods. J Exp Mar Bio Ecol 351:168–187

    Article  Google Scholar 

  • Liu G, Strong AE, Skirving W, Arzayus LF (2006) Overview of NOAA coral reef watch program’s near-real time satellite global coral bleaching monitoring activities. In: Proceeding of the 10th international coral reef symposium, vol 1. pp 1783–1793

  • Lowe RJ, Falter JL (2015) Oceanic forcing of coral reefs. Annu Rev Mar Sci 7:43–66

    Article  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Madin JSC (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480

    Article  CAS  PubMed  Google Scholar 

  • McClanahan T, Polunin N, Done T (2002) Ecological states and the resilience of coral reefs. Conservation Ecology 6:18

    Article  Google Scholar 

  • McClanahan TR, Baird AH, Marshall PA, Toscano MA (2004) Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. Mar Pollut Bull 48:327–335

    Article  CAS  PubMed  Google Scholar 

  • Moore JAY, Bellchambers LM, Depczynski M, Evans RD, Evans SN, Field SN, Friedman K, Gilmour JP, Holmes TH, Middlebrook R, Radford B, Ridgway T, Shedrawi G, Taylor H, Thomson DP, Wilson SK (2012) Unprecedented mass bleaching and loss of coral across 12° of latitude in Western Australia in 2010–11. PLoS One 7:e51807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosquera I, Cote IM, Jennings S, Reynolds JD (2000) Conservation benefits of marine reserves for fish populations. Animal Conservation 3:321–332

    Article  Google Scholar 

  • Muir PR, Wallace CC, Done T, Aguirre JD (2015) Limited scope for latitudinal extension of reef corals. Science 348:1135–1138

    Article  CAS  PubMed  Google Scholar 

  • Mumby PJ, Chisholm JRM, Edwards AJ, Andrefouet S, Jaubert J (2001) Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event. Mar Ecol Prog Ser 222:209–216

    Article  Google Scholar 

  • Nakamura T, Van Woesik R (2001) Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar Ecol Prog Ser 212:301–304

    Article  Google Scholar 

  • Nakamura T, Yamasaki H (2005) Requirement of water-flow for sustainable growth of pocilloporid corals during high temperature periods. Mar Pollut Bull 50:1115–1120

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Van Woesik R, Yamasaki H (2005) Photoinhibition of photosynthesis is reduced by water flow in the reef-building coral Acropora digitifera. Mar Ecol Prog Ser 301:109–118

    Article  Google Scholar 

  • Nyström M, Graham NAJ, Lokrantz J, Norström AV (2008) Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs 27:795–809

    Article  Google Scholar 

  • Oliver TA, Palumbi SR (2011) Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30:241–250

    Article  Google Scholar 

  • Onton K, Page C, Wilson S, Neale S, Armstrong S (2011) Distribution and drivers of coral disease at Ningaloo reef, Indian Ocean. Mar Ecol Prog Ser 433:75–84

    Article  Google Scholar 

  • Osborne K, Dolman AM, Burgess SC, Johns KA (2011) Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995–2009). PLoS One 6:e17516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Patterson MR, Sebens KP (1989) Forced convection modulates gas exchange in cnidarians. Proc Natl Acad Sci U S A 86:8833–8836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson MR, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnol Oceanogr 36:936–948

    Article  CAS  Google Scholar 

  • Pickett ST, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, Cambridge, MA

    Google Scholar 

  • Pinheiro J, Bates D (2000) Extending the basic linear mixed-effects model. In: Splettstoesser J (ed) Mixed-effects models in S and S-PLUS. Springer, New York, pp 201–270

    Chapter  Google Scholar 

  • Pisapia C, Pratchett MS (2014) Spatial variation in background mortality among dominant coral taxa on Australia’s Great Barrier Reef. PLoS One 9:e100969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pratchett MS, Trapon M, Berumen ML, Chong-Seng K (2011) Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia. Coral Reefs 30:183–193

    Article  Google Scholar 

  • Pratchett MS, Munday P, Wilson SK, Graham NA, Cinner JE, Bellwood DR, Jones GP, Polunin NV, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes. Oceanogr Mar Biol Annu Rev 46:251–296

    Google Scholar 

  • Price JF, Morzel J, Niiler PP (2008) Warming of SST in the cool wake of a moving hurricane. J Geophys Res Oceans 113:C07010

    Article  Google Scholar 

  • R Core Development Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Richmond RH (1997) Reproduction and recruitment in corals: critical links in the persistence of reefs. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 175–197

    Chapter  Google Scholar 

  • Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals: comparisons among the Caribbean, the tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 60:185–203

    Article  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Schutter M, Crocker J, Paijmans A, Janse M, Osinga R, Verreth AJ, Wijffels RH (2010) The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs 29:737–748

    Article  Google Scholar 

  • Sebens KP (1997) Adaptive responses to water flow: morphology, energetics, and distribution of reef corals. Proc 8th Int Coral Reef Symp 2:1053–1058

  • Sebens KP, Helmuth B, Carrington E, Agius B (2003) Effects of water flow on growth and energetics of the scleractinian coral Agaricia tenuifolia in Belize. Coral Reefs 22:35–47

    Google Scholar 

  • Shashar N, Kinane S, Jokiel PL, Patterson MR (1996) Hydromechanical boundary layers over a coral reef. J Exp Mar Bio Ecol 199:17–28

    Article  Google Scholar 

  • Simpson CJ, Cary JL, Masini RJ (1993) Destruction of corals and other reef animals by coral spawn slicks on Ningaloo Reef, Western Australia. Coral Reefs 12:185–191

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. WH Freeman, London

    Google Scholar 

  • Sousa WP (1984) The role of disturbance in natural communities. Annu Rev Ecol Syst 15:353–391

    Article  Google Scholar 

  • Speed CW, Babcock RC, Bancroft KP, Beckley LE, Bellchambers LM, Depczynski M, Field SN, Friedman KJ, Gilmour JP, Hobbs J-PA, Kobryn HT, Moore JAY, Nutt CD, Shedrawi G, Thomson DP, Wilson SK (2013) Dynamic stability of coral reefs on the west Australian coast. PLoS One 8:e69863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taebi S, Lowe RJ, Pattiaratchi CB, Ivey GN, Symonds G (2012) A numerical study of the dynamics of the wave-driven circulation within a fringing reef system. Ocean Dyn 62:585–602

    Article  Google Scholar 

  • Taebi S, Lowe RJ, Pattiaratchi CB, Ivey GN, Symonds G, Brinkman R (2011) Nearshore circulation in a tropical fringing reef system. J Geophys Res Oceans 116:C02016

    Article  Google Scholar 

  • Thomas FIM, Atkinson MJ (1997) Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol Oceanogr 42:81–88

    Article  CAS  Google Scholar 

  • Toohey BD, Kendrick GA (2007) Survival of juvenile Ecklonia radiata sporophytes after canopy loss. J Exp Mar Bio Ecol 349:170–182

    Article  Google Scholar 

  • Toohey BD, Kendrick GA, Harvey ES (2007) Disturbance and reef topography maintain high local diversity in Ecklonia radiata kelp forests. Oikos 116:1618–1630

    Article  Google Scholar 

  • Turner SJ (1994) Spatial variability in the abundance of the corallivorous gastropod Drupella cornus. Coral Reefs 13:41–48

    Article  Google Scholar 

  • Van Schoubroeck P, Long S (2007) Disturbance history of coral reef communities in Bill’s Bay, Ningaloo Marine Park, 1989–2007. Marine Science Program, Department of Environment and Conservation, Perth, Australia

    Google Scholar 

  • Venti A, Kadko D, Andersson AJ, Langdon C, Bates NR (2012) A multi-tracer model approach to estimate reef water residence times. Limnol Oceanogr Methods 10:1078–1095

    Article  Google Scholar 

  • Wakeford M, Done TJ, Johnson CR (2007) Decadal trends in a coral community and evidence of changed disturbance regime. Coral Reefs 27:1–13

    Article  Google Scholar 

  • Wall M, Schmidt GM, Janjang P, Khokiattiwong S, Richter C (2012) Differential impact of monsoon and large amplitude internal waves on coral reef development in the Andaman Sea. PLoS One 7:e50207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West JM, Salm RV (2003) Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conserv Biol 17:956–967

    Article  Google Scholar 

  • White PS, Pickett ST (1985) Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, Cambridge, MA

    Google Scholar 

  • Willis BL, Oliver JK (1990) Direct tracking of coral larvae: implications for dispersal studies of planktonic larvae in topographically complex environments. Ophelia 32:145–162

    Article  Google Scholar 

  • Wilson SK, Depczynski M, Fisher R, Holmes TH, O’Leary RA, Tinkler P (2010) Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae. PLoS One 5:e15185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Falter J, Lowe R, Ivey G (2012) The combined influence of hydrodynamic forcing and calcification on the spatial distribution of alkalinity in a coral reef system. J Geophys Res Oceans 117:C04034

    Google Scholar 

  • Zhang Z, Falter J, Lowe R, Ivey G, McCulloch M (2013) Atmospheric forcing intensifies the effects of regional ocean warming on reef-scale temperature anomalies during a coral bleaching event. J Geophys Res Oceans 118:4600–4616

    Article  Google Scholar 

  • Zhu B, Wang G, Huang B, Tseng CK (2004) Effects of temperature, hypoxia, ammonia and nitrate on the bleaching among three coral species. Chin Sci Bull 49:1923–1928

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Dordrecht

Download references

Acknowledgements

The authors would like to thank the Department of Parks and Wildlife Exmouth regional office for their support of research and monitoring within the World Heritage Ningaloo Marine Park. Comments from the editor and two anonymous reviewers and Dr. Rebecca Fisher greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Shedrawi.

Additional information

Communicated by Ecology Editor Dr. Stuart A. Sandin

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 11 kb)

Supplementary material 2 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shedrawi, G., Falter, J.L., Friedman, K.J. et al. Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances. Coral Reefs 36, 861–872 (2017). https://doi.org/10.1007/s00338-017-1576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1576-7

Keywords

Navigation