Skip to main content

Advertisement

Log in

A genetic approach to the origin of Millepora sp. in the eastern Atlantic

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

An Erratum to this article was published on 19 May 2015

Abstract

Many species have experienced recent range expansions due to human-mediated processes, such as the unintentional transport on ships or plastic waste and ocean warming, which facilitates many tropical species to tolerate living beyond their normal limit of distribution, with a potential impact on autochthonous assemblages. In September 2008, three colonies of the fire coral Millepora sp. (Cnidaria: Hydrozoa) were found on the southeastern coast of Tenerife (Canary Islands), though this species had been previously described to have a circumtropical distribution with Cape Verde Islands as its northern limit of distribution in the eastern Atlantic. The aim of this study was to determine the origin of these new colonies in the Canary Islands (11°N of its previously known northernmost limit of distribution) using variation in the cytochrome oxidase subunit I (COI) gene as a molecular marker. In order to do that, Millepora samples from Tenerife and Cape Verde Islands were collected for molecular analyses, and COI sequences from Caribbean samples listed in GenBank were also included in the analysis. Our results showed that all the specimens from Tenerife were genetically identical, suggesting that the colonization of the Canary Islands was the result of a very recent and strong founder effect. The nucleotide sequences of the samples from the Cape Verde and the Canary Islands were closer to the Caribbean than between themselves, pointing to the Caribbean population as the source population for both archipelagos, through independent founder events. The fact that Millepora sp. arrived to Cape Verde long before arriving to the Canaries (pleistocene fossils have been found in that archipelago) suggests that the habitat requirements for this species did not exist before in the Canarian archipelago. Therefore, the rising seawater temperatures recently registered in the Canary Islands could have facilitated the settlement of reef-forming corals drifting across the two basins of the Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Boekschoten GJ, Best MB (1988) Fossil and recent shallow water corals from the Atlantic islands off western Africa. Zool Meded 8:99–112

    Google Scholar 

  • Boschma H (1948) The species problem in Millepora. Zoologische Verhandelingen 1:1–115

    Google Scholar 

  • Boschma H (1956) Milleporina and Stylasterina. In: Moore RC (ed) Treatise on invertebrate paleontology. Geological Society of America, University of Kansas, Lawrence, pp F90–F106

    Google Scholar 

  • Brito A, Falcón JM, Herrera R (2005) Sobre la tropicalización reciente de la ictiofauna litoral de las islas Canarias y su relación con cambios ambientales y actividades antrópicas. Vieraea 33:515–525

    Google Scholar 

  • Brito A, Clemente S, Herrera R (2011) On the occurrence of the African hind, Cephalopholis taeniops, in the Canary Islands (eastern subtropical Atlantic): introduction of large-sized demersal littoral fishes in ballast water of oil platforms? Biol Invansions 13:2185–2189

    Article  Google Scholar 

  • Bullart SG, Lambert G, Carman MR, Byrnes J, Whitlatcha RB, Ruiz G, Miller RJ, Harris L, Valentine PC, Collie JS, Pederson J, McNaught, Cohen AN, Rg Asch, Dijkstra J, Heinonen K (2007) The colonial ascidian Didemnum sp. A: current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. J Exp Mar Bio Ecol 342:99–108

    Article  Google Scholar 

  • Burns TP (1985) Hard-coral distribution and cold-water disturbances in South Florida. Coral Reefs 4:117–124

    Article  Google Scholar 

  • Chapin FS III, Sala OE, Burke IC, Grime JP, Hooper DU, Laurenroth WK, Lombard A, Mooney HA, Moiser AR, Naeem S, Pacala SW, Roy J, Steffen WL, Tilman D (1998) Ecosystem consequences of changing biodiversity. Bioscience 48:45–52

    Article  Google Scholar 

  • Clemente S, Rodríguez A, Brito A, Ramos A, Monterroso O, Hernández JC (2011) On the occurrence of the hydrocoral Millepora (Hydrozoa: milleporidae) in the subtropical eastern Atlantic (Canary Islands): is the colonization related to climatic events? Coral Reefs 30:237–240

    Article  Google Scholar 

  • Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol 114:317–325

    Article  CAS  Google Scholar 

  • De Paula AF, Creed JC (2004) Two species of the coral Tubastraea (Cnidaria, Scleractinia) In Brazil: a case of accidental introduction. Bull Mar Sci 74:175–183

    Google Scholar 

  • Done TJ (1982) Patterns in the distribution of coral communities across the Central Great Barrier Reef. Coral Reefs 1:95–107

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Excoffier L, Larval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Fields RA, Graham JB, Rosenblatt RH, Somero GN (1993) Effects of expected global climate change on marine faunas. TREE 8:361–367

    CAS  PubMed  Google Scholar 

  • Fishelson L (1973) Ecological and biological phenomena influencing coral species composition on the reef tables at Eilat (Gulf of Aqaba, Red Sea). Mar Biol 19:183–196

    Article  Google Scholar 

  • Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337

    Article  CAS  PubMed  Google Scholar 

  • Freitas R, Luiz OJ, Silva PN, Floeter SR, Bernardi G, Ferreira CEL (2013) The occurrence of Sparisoma frondosum (Teloestei: Labridae) in the Cape Verde Archipelago, with a summary of expatriated Brazilian endemic reef fishes. Mar Biodivers 44:173–179

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodríguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  PubMed  Google Scholar 

  • Hernández JC, Clemente S, Sangil C, Brito A (2008) The key role of the sea urchin Diadema aff. antillarum in controlling macroalgae assemblages throughout the Canary Islands (eastern subtropical Atlantic): a spatio-temporal approach. Mar Environ Res 66:259–270

    Article  PubMed  Google Scholar 

  • Hernández JC, Clemente S, Girard D, Pérez-Ruzafa A, Brito A (2010) Effect of temperature of settlement and postsettlement survival in a barrens-forming sea urchin. Mar Ecol Prog Ser 413:69–80

    Article  Google Scholar 

  • Hoeksema BW, Roos PJ, Cadée GC (2012) Trans-Atlantic rafting by the brooding reef coral Favia fragum on man-made flotsam. Mar Ecol Prog Ser 445:209–218

    Article  Google Scholar 

  • Jackson JBC (1985) Distribution and ecology of clonal and aclonal benthic invertebrates. In: Jackson JBC, Buss LW, Cook RF, Ashmun JW (eds) Population biology and evolution of clonal organism. Yale University Press, New Haven, Connecticut USA, pp 297–355

    Google Scholar 

  • Jackson JBC (1986) Modes of dispersal of clonal benthic invertebrates: consequences for species’ distributions and genetic structure of local populations. Bull Mar Sci 39:588–606

    Google Scholar 

  • Jokiel PL (1989) Rafting of reef corals and other organisms at Kwajalein Atoll. Mar Biol 101:483–493

    Article  Google Scholar 

  • Lasker HR (1990) Asexual reproduction, fragmentation, and skeletal morphology of a plexaurid gorgonian. Mar Ecol Prog Ser 19:261–268

    Article  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Lewis JB (1989) The ecology of Millepora. Coral Reefs 8:99–107

    Article  Google Scholar 

  • Lewis JB (2006) Biology and Ecology of the Hydrocoral Millepora on Coral Reefs. Adv Mar Biol 50:1–55

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5 A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Ling SD (2008) Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156:883–894

    Article  CAS  PubMed  Google Scholar 

  • Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137

    Article  CAS  PubMed  Google Scholar 

  • McManus JW, Vergara SG (1998) ReefBase: a global database on coral reefs and their resources. Version 3.0 ICLARM Manila, Philippines

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci 98:5446–5451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morri C, Bianchi CN (1995) Cnidarian zonation at llha do Sal (Arquipelago de Cabo Verde). Beiträge zur Paläontologie Wien 20:41–49

    Google Scholar 

  • Morri C, Cattaeno-Vietti R, Sartoni G, Banchi CN (2000) Shallow epibenthic communities of Ilha do Sal (Cape Verde Archipelago, eastern Atlantic). Life Mar Sci Supplement Part 2A:157–165

    Google Scholar 

  • Moyle PB, Light T (1996) Biological invasions of fresh water: empirical rules and assemblage theory. Biol Conserv 78:149–161

    Article  Google Scholar 

  • Nunes FLD, Norris RD, Knowlton N (2011) Long distance dispersal and connectivity in amphi-atlantic corals at regional and basin scales. PLoS ONE 6:e22298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramos AG, Martel A, Codd GA, Soler E, Coca J, Redondo A, Morrison LF, Metcalf JS, Ojeda A, Suárez S, Petit M (2005) Bloom of the marine diazotrophic cyanobacterium Richodesmium erythraceum in the Northwest African Upwelling. Mar Ecol Prog Ser 301:303–305

    Article  Google Scholar 

  • Reichard SH, Hamilton CV (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11:193–203

    Article  Google Scholar 

  • Reimer JD, Hirose M, Wirtz P (2010) Zoanthids of the Cape Verde Islands and their symbionts: previously unexamined diversity in the Northeastern Atlantic. Contrib Zool 79:147–163

    Google Scholar 

  • Richards ZT, Oppen MJH, Wallace CC, Willis BL, Miller DJ (2008) Some rare Indo-Pacific coral species are probable hybrids. PLoS ONE 3:e3240

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruiz-Ramos DV (2009) Morphological and genetic variation in the Caribbean species of the hydrocoral genus Millepora. Ph.D. thesis, University of Puerto Rico, Mayagüez

  • Ruiz-Ramos DV, Weil E, Schizas NV (2014) Morphological and genetic evaluation of the hydrocoral Millepora species complex in the Caribbean. Zool Stud 53:1–15

    Article  Google Scholar 

  • Serrano E, Coma R, Ribes M, Weitzmann B, García M, Ballesteros E (2013) Rapid northward spread of a zooxanthellate coral enhanced by artificial structures and sea warming in the western Mediterranean. PLoS ONE 8:e52739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974

    Article  Google Scholar 

  • Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286:1577–1579

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Oppen MJH, Willis BL, Van Vugt HWJA, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinian, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. University of New South Wales Press, Sydney

    Google Scholar 

  • Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst 38:327–359

    Article  Google Scholar 

  • Wonham MJ, Carlton JT, Ruiz GM, Smith LD (2000) Fish and ships: relating dispersal frequency to success in biological invasions. Mar Biol 136:1111–1121

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by a grant from Gobierno de Canarias ACIISI “PROYECTO ESTRUCTURANTE EN CIENCIAS MARINAS: GENMOLBIO” (FEDER) to C. López and by the Programa de Cooperación Transnacional Madeira-Azores-Canarias (MAC 2007-2013), in the context of the Canarias-Campus de Excelencia Internacional: ‘Educar para Conservar el Mar’ (ECOMAR-SEMACA). We would like to thank José Carlos Mendoza, José Carlos Hernández, Carlos Sangil and David Martínez for making the trip to Cape Verde a great trip and to the anonymous reviewers for their suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. López.

Additional information

Communicated by Biology Editor Dr. Mark Vermeij

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, C., Clemente, S., Almeida, C. et al. A genetic approach to the origin of Millepora sp. in the eastern Atlantic. Coral Reefs 34, 631–638 (2015). https://doi.org/10.1007/s00338-015-1260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1260-8

Keywords

Navigation