Skip to main content
Log in

Determination of dextromethorphan and dextrorphan in urine by capillary zone electrophoresis: Application to the determination of debrisoquin-oxidation metabolic phenotype

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

A capillary zone electrophoresis method has been developed for the determination of dextromethorphan and its metabolite, dextrorphan, in urine. A linear relationship was observed between the peak area and the concentration of both dextromethorphan and dextrorphan within the range of 490 ng mL−1 to 500 μg mL−1 with a correlation coefficient of greater than 0.9999. The limit of detection was 80 ng mL−1 for both compounds. The inter-day coefficients of variation for the concentrations of 2.5 μg mL−1 and 50 μg mL−1 were 6.2% and 4.1% for dextromethorphan, and 5.6% and 2.8% for dextrorphan (n=15). The method could be applied directly to the determination of dextromethorphan and dextrorphan in human urine without any sample pretreatment for the elimination of interfering compounds as is required in published highperformance liquid chromatography and gas chromatography methods. Using dextromethorphan as a probe of the debrisoquin-oxidation metabolic phenotype, the 44 healthy volunteers were phenotyped after oral administration of a 15 mg dose using both this capillary electrophoresis method and a high-performance liquid chromatography assay from the literature. Good agreement was found between the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Goodman, A. Gilman, “The Pharmacological Basis of Therapeutics”, Maemillan, New York, 1975, p. 279.

    Google Scholar 

  2. Y. H. Park, M. P. Kullberg, O. N. Hinsvark, J. Pharm. Sci.73, 24 (1984).

    Google Scholar 

  3. A. Kupfer, B. Schmid, G. Pfaff, Xenobiotica16, 421 (1986).

    Google Scholar 

  4. B. Schmid, J. Bircher, R. Preisig, A. Kupfer, Clin. Pharm. Ther.38, 618 (1986).

    Google Scholar 

  5. M. Hildebrand, W. Seifert, A. Reichenberger, Eur. J. Clin. Pharmacol.36, 315 (1989).

    Google Scholar 

  6. J. Barnhart, Toxicol. Appl. Pharmacol.55, 43 (1980).

    Google Scholar 

  7. G. Paff, P. Briegel, I. Lamprecht, Int. J. Pharm.66, 173 (1983).

    Google Scholar 

  8. M. Furlanut, L. Cima, P. Benetello, P. Giusti, J. Chromatogr.140, 270 (1977).

    Google Scholar 

  9. M. Wenk, L. Todesco, B. Keller, F. Follath, J. Pharm. Biomed. Anal.9, 341 (1991).

    Google Scholar 

  10. H. Mascher, J. Chromatogr.420, 217 (1987).

    Google Scholar 

  11. T. East, D. Dye, J. Chromatogr.388, 99 (1985).

    Google Scholar 

  12. R. G. Achari, H. M. Ederma, D. Chin, S. R. Oles, J. Pharm. Sci.73, 1821 (1984).

    Google Scholar 

  13. N. Motassim, D. Decolin, T. Le Dinh, A. Nicolas, G. Siest, J. Chromatogr.422, 340 (1987).

    Google Scholar 

  14. T. Zysset, T. Zeugin, A. Kupfer, Biochem. Pharmacol.37, 3155 (1988).

    Google Scholar 

  15. Z. Chen, A. Somogy, F. Bocher, Therap. Drug Monitor.12, 97 (1990).

    Google Scholar 

  16. W. E. Evans, M. V. Relling, W. P. Petros, W. H. Meyer, J. Mirro, W. R. Crom, Clin. Pharmacol. Ther.45, 568 (1989).

    Google Scholar 

  17. Ö. Mortimer, B. Lindström, H. Laurell, U. Bergman, A. Rane, Br. J. Clin. Pharmac.27, 223 (1989).

    Google Scholar 

  18. R. J. Guttendorf, M. Britto, R. A. Blouin, T. S. Foster, W. John, K. A. Pittman, P. J. Wedlund, Br. J. Clin. Pharmacol.29, 373 (1990).

    Google Scholar 

  19. W. G. Kuhr, Anal. Chem.62, 403R (1990).

    Google Scholar 

  20. D. K. Lloyd, K. Fried, I. W. Wainer, J. Chromatogr.578, 283 (1992).

    Google Scholar 

  21. D. K. Lloyd, Anal. Proc.29, 169 (1992).

    Google Scholar 

  22. T. Nakagawa, Y. Oda, A. Shibukawa, H. Fukuda, H. Tanaka, Chem. Pharm. Bull.37, 707 (1989).

    Google Scholar 

  23. W. Thormann, A. Minger, S. Molteni, J. Caslavska, P. Gebauer, J. Chromatogr.593, 275 (1992).

    Google Scholar 

  24. N. J. Reinhoud, W. M. A. Niessen, U. R. Tjaden, L. G. Gramberg, E. R. Verheij, J. van der Greef, Rapid Commun. Mass Spectrom.3, 348 (1989).

    Google Scholar 

  25. J. L. Beckers, F. M. Everaerts, M. T. Ackermans, J. Chromatogr.537, 407 (1991).

    Google Scholar 

  26. D. S. Bugi, R. L. Chien, Anal. Chem.63, 2042 (1991).

    Google Scholar 

  27. D. K. Lloyd, A. M. Cypess, I. W. Wainer, J. Chromatogr.568, 117 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Fried, K., Wainer, I.W. et al. Determination of dextromethorphan and dextrorphan in urine by capillary zone electrophoresis: Application to the determination of debrisoquin-oxidation metabolic phenotype. Chromatographia 35, 216–222 (1993). https://doi.org/10.1007/BF02269706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02269706

Key Words

Navigation